Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Eng Technol ; 28(3): 95-103; discussion 104, 2004.
Article in English | MEDLINE | ID: mdl-15204613

ABSTRACT

Grafts used in aortic valve-sparing procedures should ideally not only reproduce the geometry of the natural aortic root but also its material properties. Indeed, a number of studies using the finite element method have shown the importance of the natural sinus shape of the root in the functioning of the normal aortic valve, and the relative increase in stresses due to the replacement of the valve by a stiffer synthetic graft. Because of the wide range in experimentally measured values of aortic wall and leaflet material properties, studies by different research groups have incorporated very different material properties in their models. The aim of the present study was to investigate the influence of material properties on aortic wall displacements, and to determine which material properties would most closely match reported experimental data. Two geometrically accurate 3D models corresponding to the closed and open valve configurations were created in Pro/Engineer CAD software. Loads corresponding to systolic and diastolic pressures were specified and large-displacement structural analyses were carried out using the ANSYS package. Results have indicated that the closest match to experiments using isotropic material properties occurred for a Young's modulus of about 2000 KPa. Nonlinear models based on experimental stress-strain curves have shown similar displacements, but altered strain distribution patterns and significantly lower stresses. These results suggest that an accurate comparison of potential new graft models would have to be made with natural aortic valve models incorporating nonlinear material behavior.


Subject(s)
Aortic Valve/physiology , Computer Simulation , Models, Biological , Aortic Valve/anatomy & histology , Diastole , Elasticity , Finite Element Analysis , Heart Valve Prosthesis , Humans , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...