Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Foods ; 9(9)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899297

ABSTRACT

The main role of acidity and pH is to confer microbial stability to wines. No less relevant, they also preserve the color and sensory properties of wines. Tartaric and malic acids are generally the most prominent acids in wines, while others such as succinic, citric, lactic, and pyruvic can exist in minor concentrations. Multiple reactions occur during winemaking and processing, resulting in changes in the concentration of these acids in wines. Two major groups of microorganisms are involved in such modifications: the wine yeasts, particularly strains of Saccharomyces cerevisiae, which carry out alcoholic fermentation; and lactic acid bacteria, which commonly conduct malolactic fermentation. This review examines various such modifications that occur in the pre-existing acids of grape berries and in others that result from this microbial activity as a means to elucidate the link between microbial diversity and wine composition.

2.
Foods ; 8(11)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731512

ABSTRACT

This study aimed to optimize bean flours fermentation through the use of appropriate technological procedure and, thereby, to obtain a high quality and safe product. In this line, cowpea bean flours with different moisture conditions (10, 20 and 30%) were incubated with (1) a single culture of Lactobacillus plantarum, or (2) a consortium of lactic acid and acetic acid bacteria, together with one strain of Saccharomyces cerevisiae. Effects of inoculation of cowpea beans flours on stability (i.e., evaluated by the decrease in pH), and variations in nutritional characteristics (i.e., protein, starch, water soluble carbohydrates, total dietary fibre) were investigated. In both fermented flours, the effect of fermentation was more noticeable in total water-soluble carbohydrate (WSC) concentration during the fermentation process (P < 0.001), accounted for by metabolic activity of the microorganisms. The pH values progressively decreased (P < 0.001) through the fermentation process, particularly in flours fermented with a single culture of L. plantarum. By contrast, titratable acidity increased (P < 0.001) throughout the fermentation process in F2 and F3, although more noticeable in F3. Total dietary fibre (TDF) was not variable over the time. In relation to the protein content, the fermentations behaved very similarly; F2 had a variation over the time, but the effect was not significant (P = 0.0690). Results revealed small changes in chemical composition except in the case of pH and sugar contents with the values lower in the fermented products (i.e., single- or mixed-culture fermentation), leading to a more stable and safety product. These results indicate that fermented dry beans flours have the potential as functional ingredients for new food formulations.

3.
Microorganisms ; 7(11)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652781

ABSTRACT

Non-Saccharomyces yeasts have received increased attention by researchers and winemakers, due to their particular contributions to the characteristics of wine. In this group, Saccharomycodes ludwigii is one of the less studied species. In the present study, a native S. ludwigii strain, UTAD17 isolated from the Douro wine region was characterized for relevant oenological traits. The genome of UTAD17 was recently sequenced. Its potential use in winemaking was further evaluated by conducting grape-juice fermentations, either in single or in mixed-cultures, with Saccharomyces cerevisiae, following two inoculation strategies (simultaneous and sequential). In a pure culture, S. ludwigii UTAD17 was able to ferment all sugars in a reasonable time without impairing the wine quality, producing low levels of acetic acid and ethyl acetate. The overall effects of S. ludwigii UTAD17 in a mixed-culture fermentation were highly dependent on the inoculation strategy which dictated the dominance of each yeast strain. Wines whose fermentation was governed by S. ludwigii UTAD17 presented low levels of secondary aroma compounds and were chemically distinct from those fermented by S. cerevisiae. Based on these results, a future use of this non-Saccharomyces yeast either in monoculture fermentations or as a co-starter culture with S. cerevisiae for the production of wines with greater expression of the grape varietal character and with flavor diversity could be foreseen.

4.
Microorganisms ; 7(10)2019 Sep 29.
Article in English | MEDLINE | ID: mdl-31569525

ABSTRACT

Mead is a traditional beverage that results from the alcoholic fermentation of diluted honey performed by yeasts. Although the process of mead production has been optimized in recent years, studies focused on its sensory properties are still scarce. Therefore, the aim of this work was to analyse the sensory attributes of mead produced with free or immobilized cells of the Saccharomyces cerevisiae strains QA23 and ICV D47, and to establish potential correlations with its volatile composition. In the volatile composition of mead, the effect of yeast condition was more important than the strain. In respect to sensory analysis, the most pleasant aroma descriptors were correlated with mead obtained with free yeast cells, independently of the strain. Both sensory analysis and volatile composition indicates that the most pleasant mead was produced by free yeast cells. Although this study has provided a significant contribution, further research on the sensory quality of mead is still needed.

5.
Food Sci Nutr ; 7(2): 617-627, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847141

ABSTRACT

The aim of this study was the production of blueberry wine and the characterization of the volatile compounds of fermented and aging in bottle products. Multivariate data analysis indicated similarity of volatile compounds released when fermentations were conducted at laboratory-scale and midscale, with the exception of one replicate creating a distinctive group characterized by low concentrations of acetaldehyde, methanol, 1-hexanol, and ethyl hexanoate, and the production of polyalcohols such as 2,3-butanediols. This experiment was the only one where no adjustments of YAN were performed. Some of the major volatile compounds (acetaldehyde, ethyl acetate, 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-phenylethanol) were found above their perception thresholds. Esters and terpenic compounds were the groups of volatiles expressed the most in blueberry wines, followed by volatile fatty acids, alcohols, and norisoprenoids (3-hydroxy-7,8-dihydro-ß-ionone, 3-oxo-α-ionol, and 3-hydroxy-7,8-dihydro-ß-ionol). The wines that experienced bottle-aging are characterized by high concentrations of ethyl esters, diethyl succinate, ethyl lactate, and diethyl malonate. The results contribute for deeper knowledge of the technological procedure, analytical characteristics, and volatile compounds of blueberry wines, reinforcing the interest in this beverage and opening perspectives for further studies on the production of new blueberry-based products with differential characteristics that value its nutraceutical and functional properties.

6.
DNA Res ; 26(1): 67-83, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30462193

ABSTRACT

Hanseanispora species, including H. guilliermondii, are long known to be abundant in wine grape-musts and to play a critical role in vinification by modulating, among other aspects, the wine sensory profile. Despite this, the genetics and physiology of Hanseniaspora species remains poorly understood. The first genomic sequence of a H. guilliermondii strain (UTAD222) and the discussion of its potential significance are presented in this work. Metabolic reconstruction revealed that H. guilliermondii is not equipped with a functional gluconeogenesis or glyoxylate cycle, nor does it harbours key enzymes for glycerol or galactose catabolism or for biosynthesis of biotin and thiamine. Also, no fructose-specific transporter could also be predicted from the analysis of H. guilliermondii genome leaving open the mechanisms underlying the fructophilic character of this yeast. Comparative analysis involving H. guilliermondii, H. uvarum, H. opuntiae and S. cerevisiae revealed 14 H. guilliermondii-specific genes (including five viral proteins and one ß-glucosidase). Furthermore, 870 proteins were only found within the Hanseniaspora proteomes including several ß-glucosidases and decarboxylases required for catabolism of biogenic amines. The release of H. guilliermondii genomic sequence and the comparative genomics/proteomics analyses performed, is expected to accelerate research focused on Hanseniaspora species and to broaden their application in the wine industry and in other bio-industries in which they could be explored as cell factories.


Subject(s)
Fermentation , Genome, Fungal , Hanseniaspora/genetics , Hanseniaspora/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Analysis, DNA , Sequence Analysis, Protein
7.
Article in English | MEDLINE | ID: mdl-30533777

ABSTRACT

This work describes, for the first time, the genome sequence of a Saccharomycodes ludwigii strain. Although usually seen as a wine spoilage yeast, S. ludwigii has been of interest for the production of fermented beverages because it harbors several interesting properties, including the production of beneficial aroma compounds.

8.
Genome Announc ; 5(5)2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28153887

ABSTRACT

In this work, we disclose the genome sequence and a corresponding manually curated annotation of the non-Saccharomyces yeast Hanseniaspora guilliermondii UTAD222, a strain shown to have interesting oenological traits for the production of wines with improved aromatic properties.

9.
Food Chem ; 218: 40-46, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27719927

ABSTRACT

The generalization ability of hyperspectral imaging combined with neural networks (NN) in estimating pH and anthocyanin content during ripening was evaluated for vintages and varieties not employed in the NN creation. A NN, from a previously published work, trained with grape samples of Touriga Franca (TF) variety harvested in 2012 was tested with TF from 2013 and two new varieties, Touriga Nacional (TN) and Tinta Barroca (TB) from 2013. Each sample contained a small number of whole berries. The present work results suggest that, under certain conditions, it might be possible for the NN to provide for new vintages and varieties results comparable to those of the vintages and varieties employed in the NN training. For pH, the results are state-of-the-art for the new vintage and varieties tested. For anthocyanin, generalization is bad for TB from 2013 but presents state-of-the-art absolute percentage error for TF and TN from 2013.


Subject(s)
Anthocyanins/analysis , Neural Networks, Computer , Vitis/chemistry , Wine/analysis , Food Analysis , Hydrogen-Ion Concentration
10.
Microb Cell Fact ; 14: 124, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26314747

ABSTRACT

BACKGROUND: The introduction of yeast starter cultures consisting in a blend of Saccharomyces cerevisiae and non-Saccharomyces yeast strains is emerging for production of wines with improved complexity of flavor. The rational use of this approach is, however, dependent on knowing the impact that co-inoculation has in the physiology of S. cerevisiae. In this work the transcriptome of S. cerevisiae was monitored throughout a wine fermentation, carried out in single culture or in a consortium with Hanseniaspora guilliermondii, this being the first time that this relevant yeast-yeast interaction is examined at a genomic scale. RESULTS: Co-inoculation with H. guilliermondii reduced the overall genome-wide transcriptional response of S. cerevisiae throughout the fermentation, which was attributable to a lower fermentative activity of S. cerevisiae while in the mixed-fermentation. Approximately 350 genes S. cerevisiae genes were found to be differently expressed (FDR < 0.05) in response to the presence of H. guilliermondii in the fermentation medium. Genes involved in biosynthesis of vitamins were enriched among those up-regulated in the mixed-culture fermentation, while genes related with the uptake and biosynthesis of amino acids were enriched among those more expressed in the single-culture. The differences in the aromatic profiles of wines obtained in the single and in the mixed-fermentations correlated with the differential expression of S. cerevisiae genes encoding enzymes required for formation of aroma compounds. CONCLUSIONS: By integrating results obtained in the transcriptomic analysis performed with physiological data our study provided, for the first time, an integrated view into the adaptive responses of S. cerevisiae to the challenging environment of mixed culture fermentation. The availability of nutrients, in particular, of nitrogen and vitamins, stands out as a factor that may determine population dynamics, fermentative activity and by-product formation.


Subject(s)
Fermentation , Hanseniaspora/metabolism , Saccharomyces cerevisiae/metabolism , Wine , Coculture Techniques , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genomics , Microbial Interactions , Saccharomyces cerevisiae/genetics
11.
Int J Food Microbiol ; 188: 45-52, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25087204

ABSTRACT

Lactic acid bacteria (LAB) are a promising solution to reduce exposure to dietary mycotoxins because of the unique mycotoxin decontaminating characteristic of some LAB. Ochratoxin A (OTA) is one of the most prominent mycotoxins found in agricultural commodities. The present work reports on the ability of Pediococcus parvulus strains that were isolated from Douro wines that spontaneously underwent malolactic fermentation to detoxify OTA. These strains were identified and characterised using a polyphasic approach that employed both phenotypic and genotypic methods. When cultivated on OTA-supplemented MRS media, OTA was biodegraded into OTα by certain P. parvulus strains. The presence of OTα was confirmed using LC-MS/MS. The conversion of OTA into OTα indicates that the OTA amide bond was hydrolysed by a putative peptidase. The rate of OTA biodegradation was found to be dependent on the inoculum size and on the incubation temperature. Adsorption assays with dead P. parvulus cells showed that approximately 1.3%±1.0 of the OTA was adsorbed onto cells wall, which excludes this mechanism in the elimination of OTA by strains that degrades OTA. Under optimum conditions, 50% and 90% of OTA were degraded in 6 and 19h, respectively. Other LAB strains that belonged to different species were tested but did not degrade OTA. OTA biodegradation by P. parvulus UTAD 473 was observed in grape must. Because some P. parvulus strains have relevant probiotic properties, the strains that were identified could be particularly relevant to food and feed applications to counteract the toxic effects of OTA.


Subject(s)
Ochratoxins/metabolism , Pediococcus/metabolism , Wine/microbiology , Molecular Sequence Data , Ochratoxins/analysis , Phylogeny , Tandem Mass Spectrometry , Time , Vitis/chemistry , Vitis/microbiology
12.
AMB Express ; 4: 39, 2014.
Article in English | MEDLINE | ID: mdl-24949272

ABSTRACT

Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase.

13.
Int J Food Microbiol ; 172: 62-9, 2014 Feb 17.
Article in English | MEDLINE | ID: mdl-24361834

ABSTRACT

Non-Saccharomyces yeasts include different species which comprise an ecologically and biochemically diverse group capable of altering fermentation dynamics and wine composition and flavour. In this study, single- and mixed-culture of Hanseniaspora guilliermondii and Saccharomyces cerevisiae were used to ferment natural grape-juice, under two nitrogen regimes. In single-culture the strain H. guilliermondii failed to complete total sugar breakdown even though the nitrogen available has not been a limiting factor of its growth or fermentative activity. In mixed-culture, that strain negatively interfered with the growth and fermentative performance of S. cerevisiae, resulting in lower fermentation rate and longer fermentation length, irrespective of the initial nitrogen concentration. The impact of co-inoculation on the volatile compounds profile was more evident in the wines obtained from DAP-supplemented musts, characterised by increased levels of ethyl and acetate esters, associated with fruity and floral character of wines. Moreover, the levels of fatty acids and sulphur compounds which are responsible for unpleasant odours that depreciate wine sensory quality were significantly lower. Accordingly, data obtained suggests that the strain H. guilliermondii has potential to be used as adjunct of S. cerevisiae in wine industry, although possible interactions with S. cerevisiae still need to be elucidated.


Subject(s)
Fermentation , Hanseniaspora/metabolism , Nitrogen/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Wine/analysis , Wine/microbiology , Odorants/analysis , Volatile Organic Compounds/analysis
14.
Int J Food Microbiol ; 160(2): 87-93, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23177046

ABSTRACT

Sulphur-containing amino acids, cysteine and methionine, are generally found in very low concentrations in grape-juice. The objective of this study was to identify the effects of methionine on aroma compounds formation. Nitrogen source effects on growth, fermentative behaviour and aroma compounds formation were evaluated in three strains of Saccharomyces cerevisiae cultivated in batch under moderate nitrogen concentration, 267mg YAN/L, supplied as di-ammonium phosphate (DAP), a mixture of amino acids with (AA) or without methionine (AA(wMet)), and a mixture of AA plus DAP. Fermentative vigour and final biomass yields were dependent on the nitrogen source, for each of the strains tested, in particular for EC1118. Additionally, despite the strain-dependent behaviour with respect to the basal level of H(2)S produced, the comparison of treatments AA and AA(wMet) showed that presence of methionine suppressed H(2)S production in all strains tested, and altered aroma compound formation, particularly some of those associated with fruity and floral characters which were consistently more produced in AA(wMet). Moreover, DAP supplementation resulted in a remarkable increase in H(2)S formation, but no correlation between sulphide produced and yeast fermentative vigour was observed. Results suggest that the use of different nitrogen sources results in the production of wines with divergent aroma profiles, most notably when EC1118 strain is used. Methionine determination and its management prior to fermentation are crucial for suppressing H(2)S and to endowing beverages with diverse sensory traits.


Subject(s)
Fermentation , Nitrogen/chemistry , Nitrogen/metabolism , Saccharomyces cerevisiae/metabolism , Vitis/chemistry , Volatile Organic Compounds/metabolism , Analysis of Variance , Fruit/chemistry , Hydrogen Sulfide/metabolism , Methionine/metabolism , Phosphates/metabolism , Principal Component Analysis , Saccharomyces cerevisiae/growth & development , Wine
15.
Appl Microbiol Biotechnol ; 89(2): 271-80, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20931186

ABSTRACT

Acetic acid is the main component of the volatile acidity of grape musts and wines. It can be formed as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, which can metabolize residual sugars to increase volatile acidity. Acetic acid has a negative impact on yeast fermentative performance and affects the quality of certain types of wine when present above a given concentration. In this mini-review, we present an overview of fermentation conditions and grape-must composition favoring acetic acid formation, as well the metabolic pathways leading to its formation and degradation by yeast. The negative effect of acetic acid on the fermentative performance of Saccharomyces cerevisiae will also be covered, including its role as a physiological inducer of apoptosis. Finally, currently available wine deacidification processes and new proposed solutions based on zymological deacidification by select S. cerevisiae strains will be discussed.


Subject(s)
Acetic Acid/metabolism , Fermentation , Saccharomyces cerevisiae/metabolism , Vitis/microbiology , Wine/analysis , Acetic Acid/chemistry , Apoptosis , Saccharomyces cerevisiae/cytology , Vitis/metabolism , Volatilization , Wine/microbiology
16.
Appl Environ Microbiol ; 76(24): 7918-24, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20952643

ABSTRACT

Throughout alcoholic fermentation, nitrogen depletion is one of the most important environmental stresses that can negatively affect the yeast metabolic activity and ultimately leads to fermentation arrest. Thus, the identification of the underlying effects and biomarkers of nitrogen limitation is valuable for controlling, and therefore optimizing, alcoholic fermentation. In this study, reactive oxygen species (ROS), plasma membrane integrity, and cell cycle were evaluated in a wine strain of Saccharomyces cerevisiae during alcoholic fermentation in nitrogen-limiting medium under anaerobic conditions. The results indicated that nitrogen limitation leads to an increase in ROS and that the superoxide anion is a minor component of the ROS, but there is increased activity of both Sod2p and Cta1p. Associated with these effects was a decrease in plasma membrane integrity and a persistent cell cycle arrest at G(0)/G(1) phases. Moreover, under these conditions it appears that autophagy, evaluated by ATG8 expression, is induced, suggesting that this mechanism is essential for cell survival but does not prevent the cell cycle arrest observed in slow fermentation. Conversely, nitrogen refeeding allowed cells to reenter cell cycle by decreasing ROS generation and autophagy. Altogether, the results provide new insights on the understanding of wine fermentations under nitrogen-limiting conditions and further indicate that ROS accumulation, evaluated by the MitoTracker Red dye CM-H(2)XRos, and plasma membrane integrity could be useful as predictive markers of fermentation problems.


Subject(s)
Alcohols/metabolism , Nitrogen/metabolism , Reactive Oxygen Species/toxicity , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Superoxides/analysis , Autophagy/drug effects , Cell Cycle/drug effects , Cell Membrane/drug effects , Cell Membrane/physiology , Culture Media/chemistry , Fermentation , Microbial Viability/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/physiology
17.
J Microbiol Biotechnol ; 20(9): 1314-21, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20890097

ABSTRACT

Sulfur metabolism in S. cerevisiae is well established, but the mechanisms underlying the formation of sulfide remain obscure. Here we investigated by real time RT-PCR the dependence of expression levels of MET3, MET5/ECM17, MET10, MET16 and MET17 along with SSU1 on nitrogen availability in two wine yeast strains that produce divergent sulfide profiles. MET3 was the most highly expressed of the genes studied in strain PYCC4072, and SSU1 in strain UCD522. Strains behaved differently according to the sampling times, with UCD522 and PYCC4072 showing the highest expression levels at 120h and 72h, respectively. In the presence of 267mg assimilable N/l, the genes were more highly expressed in strain UCD522 than in PYCC4072. MET5/ECM17 and MET17 were only weakly expressed in both strains under any condition tested. MET10 and SSU1 in both strains, but MET16 only in PYCC4072, were consistently up-regulated when sulfide production was inhibited. This study illustrates that strain genotype could be important in determining enzyme activities and therefore the rate of sulfide liberation. This linkage, for some yeast strains, of sulfide production to expression levels of genes associated to sulfate assimilation and sulfur amino acid biosynthesis could be relevant for defining new strategies for genetic improvement of wine yeasts.


Subject(s)
Gene Expression Regulation, Fungal , Nitrogen/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Sulfides/metabolism , Wine/microbiology , Anion Transport Proteins/metabolism , Fermentation , Genes, Fungal , Hydrogen Sulfide/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sulfate Adenylyltransferase/metabolism
18.
Appl Microbiol Biotechnol ; 87(4): 1317-26, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20390413

ABSTRACT

Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties.


Subject(s)
Acetic Acid/metabolism , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Sulfur Dioxide/metabolism , Volatile Organic Compounds/metabolism , Wine/analysis , Acetic Acid/analysis , Ethanol/analysis , Hydrogen-Ion Concentration , Sulfur Dioxide/analysis , Volatile Organic Compounds/analysis , Wine/microbiology
19.
Anal Chim Acta ; 657(2): 198-203, 2010 Jan 11.
Article in English | MEDLINE | ID: mdl-20005332

ABSTRACT

To evaluate the potential aroma of Aragonez clonal red musts, several free and glycosidically bound odourant compounds were extracted. Then, the gas chromatography-olfactometry (GC-O) posterior intensity method was used to evaluate their odour intensity and the compounds were identified by gas chromatography-mass spectrometry (GC-MS). A group of eight sniffers evaluated free and bound fractions of Aragonez musts and perceived forty-three and twenty-two odourant peaks respectively. Furaneol (burnt sugar, candy-cotton) and vanillin (vanilla, sweet) were identified in both free and bound fractions of Aragonez musts, indicating their grape-derived origin. Principal component analysis (PCA) was applied to the posterior intensity method data and a relationship between the different odourant compound variables and the free fractions was established. Two principal components (PCs) were found which together explained 100% of the total variance. A large number of potentially important but yet unknown odourants was detected by the GC-O analysis.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Benzaldehydes/analysis , Furans/analysis , Principal Component Analysis , Vitis/chemistry
20.
J Biosci Bioeng ; 108(2): 99-104, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19619854

ABSTRACT

The effects of nitrogen addition into nitrogen deficient/depleted media on the release of aroma compounds post-fermentation were investigated in three commercial yeast strains of Saccharomyces cerevisiae which highlight the yeast strain effect as well as nitrogen effects. By comparing the two timings of nitrogen addition, prior to fermentation or later at stationary phase (72 h), it was shown that nitrogen addition at stationary phase significantly decreases ethanol and acetic acid formation and significantly increases the following compounds: 2-phenylethanol, ethyl isobutyrate, 2-phenylethyl acetate, ethyl 2-methylbutyrate and ethyl propionate in the three strains, and also isovaleric acid, isoamyl alcohol and ethyl isovalerate in both PYCC4072 and UCD522. The strain EC1118 produced significantly less medium chain fatty acids, hexanoic, octanoic and decanoic acids and their respective esters after nitrogen addition. Therefore, timing of nitrogen addition to a ferment media can vary the concentration of certain aroma compound and might provide a means for varying wine composition.


Subject(s)
Ethanol/metabolism , Fatty Acids, Volatile/biosynthesis , Nitrogen/pharmacology , Saccharomyces cerevisiae/growth & development , Wine/microbiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...