Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Exp Eye Res ; 212: 108801, 2021 11.
Article in English | MEDLINE | ID: mdl-34688624

ABSTRACT

Endostatin, a naturally cleaved fragment of type XVIII collagen with antiangiogenic activity, has been involved in the regulation of neovascularization during diabetic retinopathy. Here, the intracellular distribution of endostatin in healthy mouse and human neuroretinas has been analyzed. In addition, to study the effect of experimental hyperglycemia on retinal endostatin, the db/db mouse model has been used. Endostatin protein expression in mouse and human retinas was studied by immunofluorescence and Western blot, and compared with db/db mice. Eye fundus angiography, histology, and immunofluorescence were used to visualize mouse retinal and intravitreal vessels. For the first time, our results revealed the presence of endostatin in neurons of mouse and human retinas. Endostatin was mainly expressed in bipolar cells and photoreceptors, in contrast to the optic disc, where endostatin expression was undetectable. Diabetic mice showed a reduction of endostatin in their retinas associated with the appearance of intravitreal vessels at the optic disc in 50% of db/db mice. Intravitreal vessels showed GFAP positive neuroglia sheath, basement membrane thickening by collagen IV deposition, and presence of MMP-2 and MMP-9 in the vascular wall. All together, these results point that decreased retinal endostatin during experimental diabetes is associated with optic disc intravitreal vascularization. Based on their phenotype, these intravitreal vessels could be neovessels. However, it cannot be ruled out the possibility that they may also represent persistent hyaloid vessels.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy/metabolism , Endostatins/metabolism , Optic Disk/metabolism , Retinal Neovascularization/metabolism , Retinal Vessels/metabolism , Vitreous Body/blood supply , Animals , Diabetic Retinopathy/diagnosis , Humans , Male , Mice , Optic Disk/pathology , Retinal Neovascularization/pathology , Retinal Neovascularization/prevention & control , Retinal Vessels/diagnostic imaging , Vitreous Body/diagnostic imaging
2.
Exp Eye Res ; 202: 108292, 2021 01.
Article in English | MEDLINE | ID: mdl-33065090

ABSTRACT

Careful control of iron availability in the retina is central to maintenance of iron homeostasis, as its imbalance is associated with oxidative stress and the progression of several retinopathies. Ferritin, known for its role in iron storage and detoxification, has also been proposed as an iron-transporter protein, through its binding to Scara5 and TIM2 membrane receptors. In this study, the presence and iron-related functions of TIM2 in the mouse retina were investigated. Our results revealed for the first time the presence of TIM2 receptors in the mouse retina, mainly in Müller cells. Experimental TIM2 downregulation in the mouse retina promoted, probably due to a compensatory mechanism, Scara5 overexpression that increased retinal ferritin uptake and induced iron overload. Consecutive reactive oxygen species (ROS) overproduction and vascular endothelial growth factor (VEGF) overexpression led to impaired paracellular and transcellular endothelial transport characterized by tight junction degradation and increased caveolae number. In consequence, blood-retinal barrier (BRB) breakdown and retinal edema were observed. Altogether, these results point to TIM2 as a new modulator of retinal iron homeostasis and as a potential target to counteract retinopathy.


Subject(s)
Blood-Retinal Barrier/physiology , Ependymoglial Cells/metabolism , Ferritins/metabolism , Membrane Proteins/physiology , Animals , Biological Transport , Blotting, Western , Homeostasis/physiology , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Ophthalmoscopy , Oxidative Stress , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Scavenger Receptors, Class A/metabolism , Spectrometry, X-Ray Emission , Tandem Mass Spectrometry , Vascular Endothelial Growth Factor A/metabolism
3.
Invest Ophthalmol Vis Sci ; 60(2): 473-487, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30707220

ABSTRACT

Purpose: It has been suggested that arteriolar annuli localized in retinal arterioles regulate retinal blood flow acting as sphincters. Here, the morphology and protein expression profile of arteriolar annuli have been analyzed under physiologic conditions in the retina of wild-type, ß-actin-Egfp, and Nestin-gfp transgenic mice. Additionally, to study the effect of hypertension, the KAP transgenic mouse has been used. Methods: Cellular architecture has been studied using digested whole mount retinas and transmission electron microscopy. The profile of protein expression has been analyzed on paraffin sections and whole mount retinas by immunofluorescence and histochemistry. Results: The ultrastructural analysis of arteriolar annuli showed a different cell population found between endothelial and muscle cells that matched most of the morphologic criteria established to define interstitial Cajal cells. The profile of protein expression of these vascular interstitial cells (VICs) was similar to that of interstitial Cajal cells and different from the endothelial and smooth muscle cells, because they expressed ß-actin, nestin, and CD44, but they did not express CD31 and α-SMA or scarcely express F-actin. Furthermore, VICs share with pericytes the expression of NG2 and platelet-derived growth factor receptor beta (PDGFR-ß). The high expression of Ano1 and high activity of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase observed in VICs was diminished during hypertensive retinopathy suggesting that these cells might play a role on the motility of arteriolar annuli and that this function is altered during hypertension. Conclusions: A novel type of VICs has been described in the arteriolar annuli of mouse retina. Remarkably, these cells undergo important molecular modifications during hypertensive retinopathy and might thus be a therapeutic target against this disease.


Subject(s)
Endothelial Cells/pathology , Hypertension/pathology , Hypertensive Retinopathy/pathology , Interstitial Cells of Cajal/pathology , Retinal Artery/pathology , Actins/metabolism , Animals , Anoctamin-1/metabolism , Arterial Pressure , Arterioles/pathology , Endothelial Cells/metabolism , Green Fluorescent Proteins/metabolism , Histocytochemistry , Hyaluronan Receptors/metabolism , Hypertensive Retinopathy/metabolism , Interstitial Cells of Cajal/metabolism , Mice , Mice, Inbred ICR , Mice, Transgenic , Microscopy, Electron, Transmission , Microscopy, Fluorescence , NADPH Dehydrogenase/metabolism , Nestin/metabolism
4.
Invest Ophthalmol Vis Sci ; 58(7): 2832-2842, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28570738

ABSTRACT

Purpose: Microaneurysms are present in healthy old-age human retinas. However, to date, no age-related pathogenic mechanism has been implicated in their formation. Here, cellular senescence, a hallmark of aging and several age-related diseases, has been analyzed in the old-age human retina and in the retina of a progeric mouse. Methods: Retinas were obtained from 17 nondiabetic donors and from mice deficient in Bmi1. Cellular senescence was analyzed by immunohistochemistry, senescent-associated ß-galactosidase activity assay, Sudan black B staining, conventional transmission electron microscopy, and immunoelectronmicroscopy. Results: Neurons, but not neuroglia, and blood vessels undergo cellular senescence in the old-age human retina. The canonical senescence markers p16, p53, and p21 were up-regulated and coexisted with apoptosis in old-age human microaneurysms. Senescent endothelial cells were discontinuously covered by fibronectin, and p16 colocalized with the ß1 subunit of fibronectin receptor α5ß1 integrin under the endothelial cellular membrane, suggesting anoikis as a mechanism involved in endothelial cell apoptosis. In a progeric mouse model deficient in Bmi1, where p21 was overexpressed, the retinal blood vessels displayed an aging phenotype characterized by enlarged caveolae and lipofuscin accumulation. Although mouse retina is not prone to develop microaneurysms, Bmi1-deficient mice presented abundant retinal microaneurysms. Conclusions: Together, these results uncover cellular senescence as a player during the formation of microaneurysms in old-age human retinas.


Subject(s)
Aging , Cellular Senescence/physiology , Microaneurysm/pathology , Retinal Vessels/ultrastructure , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Female , Humans , Immunohistochemistry , Male , Mice , Microscopy, Electron, Transmission
6.
Invest Ophthalmol Vis Sci ; 58(2): 1116-1131, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28196225

ABSTRACT

Purpose: Microaneurysms, considered a hallmark of retinal vascular disease, are present in aged retinas. Here, the basement membrane of human retinal microaneurysms has been analyzed during aging. Methods: Retinas were obtained from 17 nondiabetic donors. Whole mount retinas and paraffin sections were marked immunohistochemically with antibodies against the main components of the blood basement membrane. Trypsin digestion and transmission electron microscopy also were performed. Results: Small microaneurysms presented increased expression of collagen IV, laminin, fibronectin, nidogen, and perlecan, along with basement membrane thickening. Unexpectedly, crosslinked fibrils of collagen III, a type of collagen absent in retinal capillaries, were found specifically in small microaneurysms. This was parallel to enhanced lysyl oxidase-like (LOXL) 2 and 4 expression. Large microaneurysms showed diminution of protein content, as well as disorganization, in their basement membrane. This was concomitant with an increased expression of matrix-metalloproteinase (MMP)-9 and plasminogen activator inhibitor (PAI)-1. Pericyte coverage declined between small and large microaneurysms. Conclusions: Thickening of the basement membrane in small microaneurysms by accumulation of matrix proteins probably produced by recruited pericytes, together with the appearance of crosslinked collagen III fibrils probably due to the action of LOXL2 and LOXL4, could be considered as compensatory mechanisms to strengthen the vascular wall in the early phase of microaneurysm formation. Later, increased activity of MMP-9 and PAI-I, which produce disruption of the blood basement membrane and expansion of microthrombi respectively, and loss of pericytes, which produces weakening of the vascular wall, could explain the wall dilation observed in the late phase of microaneurysm formation.


Subject(s)
Aging , Basement Membrane/ultrastructure , Microaneurysm/diagnosis , Retinal Diseases/diagnosis , Retinal Vessels , Adolescent , Adult , Aged , Aged, 80 and over , Basement Membrane/metabolism , Female , Humans , Immunohistochemistry , Male , Matrix Metalloproteinase 9/biosynthesis , Microaneurysm/metabolism , Microscopy, Electron, Transmission , Middle Aged , Plasminogen Activator Inhibitor 1/biosynthesis , Retinal Diseases/metabolism , Tissue Donors , Young Adult
7.
PLoS One ; 9(9): e106974, 2014.
Article in English | MEDLINE | ID: mdl-25259650

ABSTRACT

Iron is essential in the retina because the heme-containing enzyme guanylate cyclase modulates phototransduction in rods and cones. Transferrin endocytosis is the classical pathway for obtaining iron from the blood circulation in the retina. However, the iron storage protein ferritin has been also recently proposed as an iron carrier. In this study, the presence of Scara5 and its binding to L-ferritin was investigated in the retina. Our results showed that Scara5, the specific receptor for L-ferritin, was expressed in mouse and human retinas in many cell types, including endothelial cells. Furthermore, we showed that intravenously injected ferritin crossed the blood retinal barrier through L-ferritin binding to Scara5 in endothelial cells. Thus, suggesting the existence of a new pathway for iron delivery and trafficking in the retina. In a murine model of photoreceptor degeneration, Scara5 was downregulated, pointing out this receptor as a potential player implicated in retinopathy and also as a possible therapeutic target.


Subject(s)
Ferritins/metabolism , Scavenger Receptors, Class A/metabolism , Animals , Biological Transport , Disease Models, Animal , Endothelial Cells/metabolism , Female , Ferritins/blood , Ferritins/genetics , Gene Expression , Gene Expression Regulation , Humans , Iron/metabolism , Male , Mice , Photoreceptor Cells/metabolism , Photoreceptor Cells/pathology , Protein Binding , Protein Transport , Retina/cytology , Retina/metabolism , Retina/pathology , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Neurons/metabolism , Scavenger Receptors, Class A/genetics
8.
Exp Eye Res ; 98: 79-87, 2012 May.
Article in English | MEDLINE | ID: mdl-22484557

ABSTRACT

Intervascular bridges are fibrous strands that connect neighboring capillaries. These strands present associated cells, intervascular bridging cells (IBCs), whose nature and functional significance remains controversial. The aim of this study was to characterize the immunophenotype of IBCs, and contribute to understand their mechanical and intercellular communication properties in the retina. Quantification and retinal distribution of IBCs were also determined. For this purpose, C57BL/6N and nestin-GFP transgenic mice, as well as human retinas, were used. Whole-mount retinas were studied by means of immunohistochemistry and cytochemistry, and isolation of retinal vasculature was achieved by trypsin/pepsin digest technique. PAS reaction and the immunolabeling with anti-collagen IV and laminin antibodies revealed that IBCs were completely surrounded by a basement membrane, connecting two or more neighboring capillaries. IBCs were scarce and their number decreased with age. They were preferentially localized in the deep vascular plexus. In a murine model of experimental glaucoma, methylcellulose injected eyes showed retinal neovascularization and increased number of IBCs in the deep vascular plexus. IBCs were marked with anti-NG2, anti-PDGFR-ß and anti-CD34 antibodies, and with tomato lectin, and were negative for PECAM-1. IBCs expressed nestin and filamentous actin, but desmin and α-smooth muscle actin were not detected. Moreover, these cells expressed the gap junction protein connexin 43. These results showed that IBCs had a pericytic nature since they expressed NG2 and the receptor for PDGF-B, and they were negative for PECAM-1. However, they were marked with CD34 and the tomato lectin, suggesting that they constitute a special subtype of pericytes, sharing characteristics with endothelial cells. IBCs presumably present mechanical functions due to the presence of filamentous actin. Connexin 43 was found in IBCs, suggesting that these cells allow intercellular communication between adjacent capillaries. This may represent an advantage for vasomotor tone integration and coordination in blood vessels without innervation, such as those of the retina.


Subject(s)
Cell Communication/physiology , Endothelium, Vascular/cytology , Pericytes/cytology , Retinal Vessels/cytology , Adult , Aged, 80 and over , Animals , Antigens/metabolism , Antigens, CD34/metabolism , Biomarkers/metabolism , Capillaries/cytology , Disease Models, Animal , Endothelium, Vascular/metabolism , Fluorescent Antibody Technique, Indirect , Glaucoma/pathology , Green Fluorescent Proteins/genetics , Humans , Immunophenotyping , Intermediate Filament Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nestin , Pericytes/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Polysaccharides/metabolism , Proteoglycans/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Retinal Neovascularization/metabolism , Retinal Neovascularization/pathology
9.
Invest Ophthalmol Vis Sci ; 50(12): 5997-6005, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19608545

ABSTRACT

PURPOSE: The retina contains two distinct populations of monocyte-derived cells: perivascular macrophages, and microglia. The present study was undertaken to evaluate the presence and function in mouse and human retinas of a subtype of resident perivascular macrophages with scavenger function, different from microglia, in physiological conditions and during retinopathy. METHODS: Perivascular macrophages were characterized by means of confocal microscopy, electron microscopy, and flow cytometry analyses. Two murine models of blood-retinal barrier breakdown and photoreceptor degeneration were used to analyze the role of these macrophages during retinopathy. RESULTS: The macrophages analyzed constituted a small population of resident perivascular cells different from microglia, since they were Iba-1 negative. Although these cells expressed F4/80 and CD11b antigens in common with microglia, they also expressed BM8 and MOMA-2 epitopes, which are macrophagic markers not expressed by microglia. Perivascular macrophages emitted autofluorescence due to cytoplasmic inclusions containing protein-bound oxidized lipids. They constitutively expressed the scavenger receptor class A and moved along blood vessels, providing an additional coating to thinner areas of the basement membrane. Moreover, they accumulated blood-borne horseradish peroxidase and acetylated low-density lipoprotein in healthy retinas. In addition, during blood-retinal barrier breakdown and photoreceptor degeneration, these cells migrated to the lesion site. CONCLUSIONS: All these morphologic and functional features are consistent with those described for brain Mato cells. Thus, this study showed the presence of autofluorescent perivascular macrophages, different from microglia, with a scavenger function that may contribute to the maintenance of the blood-retinal barrier in healthy conditions and that are also involved in retinopathy.


Subject(s)
Blood-Retinal Barrier/physiology , Macrophages/physiology , Retinal Vessels/cytology , Scavenger Receptors, Class A/metabolism , Aged, 80 and over , Animals , Biomarkers/metabolism , Capillary Permeability , Cell Movement/physiology , Female , Flow Cytometry , Fluorescence , Fluorescent Antibody Technique, Indirect , Humans , Macrophages/ultrastructure , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Microscopy, Confocal , Microscopy, Electron, Transmission , Retinal Degeneration/metabolism , Retinal Degeneration/pathology
10.
J Anat ; 215(3): 280-91, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19566699

ABSTRACT

The periphery of the vitreous body contains a population of cells termed hyalocytes. Despite the existence for more than one century of publications devoted to the pecten oculi, a convoluted coil of blood vessels that seems to be the primary source of nutrients for the avian avascular retina, little information can be found concerning the pecteneal hyalocytes. These cells are situated on the inner limiting membrane in close relationship with the convolute blood vessels. To characterize the origin and macrophagic activity of pecteneal hyalocytes, we have analysed two different stages of quail eye development using histochemistry and immunohistochemistry. Pecteneal hyalocytes express the QH1 epitope and cKit, confirming that these cells belong to the haematopoietic system. They also express vimentin, an intermediate filament protein present in cells of mesenchymal origin and very important for differentiation of fully active macrophages. However, similarly as described in porcine hyalocytes, pecteneal hyalocytes express the glial fibrillary acidic protein, a recognized neuroglial marker. Pecteneal hyalocytes did not express other neuroglial markers, such as glutamine synthetase or S100. Acidic phosphatase was activated and Lep100 was found in secondary lysosomes, confirming phagocytic activity of pecteneal hyalocytes during ocular development. Pecteneal hyalocytes strongly react with RCA-I, WFA, WGA, PNA, SNA, LEA and SBA lectins, whereas other avian macrophages from thymus and the bursa of Fabricius did not bind PNA, SNA and LEA lectins. Interestingly, WGA lectin reacts with all kinds of avian macrophages, including pecteneal hyalocytes, probably reflecting the specific binding of WGA to components of the phagocytic and endocytic pathways. In conclusion, pecteneal hyalocytes are a special subtype of blood-borne macrophages that express markers not specifically associated with the haematopoietic system.


Subject(s)
Quail/embryology , Retinal Vessels/embryology , Animals , Biomarkers/metabolism , Hematopoietic Stem Cells/metabolism , Lectins/metabolism , Macrophages/physiology , Mesenchymal Stem Cells/metabolism , Neuroglia/metabolism , Retina/cytology , Retina/embryology , Retinal Vessels/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...