Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38915277

ABSTRACT

Inhibition of sodium-glucose co-transporter 2 (SGLT2) by Empagliflozin (EMPA) and other 'flozins can improve glycemic control under conditions of diabetes and kidney disease. Though they act on the kidney, they also offer cardiovascular and liver protection. Previously, we found that EMPA decreased circulating triglycerides and hepatic lipid and cholesterol esters in male TallyHo mice fed a high milk fat diet (HMFD). The goal of this study was to determine if the liver protection is associated with a change in metabolic function by characterizing the hepatic and circulating metabolic and lipidomic profiles using targeted LC-MS. In both male and female mice, HMFD feeding significantly altered the circulating and hepatic metabolome compared to low-fat diet (LFD). Addition of EMPA resulted in the restoration of circulating orotate (intermediate in pyrimidine biosynthesis) and hepatic dihydrofolate (intermediate in the folate and methionine cycles) levels in males and acylcarnitines in females. These changes were partially explained by altered expression of rate-limiting enzymes in these pathways. This metabolic signature was not detected when EMPA was incorporated into an LFD suggesting that the restoration requires the metabolic shift that accompanies the HMFD. Notably, the HMFD increased expression of 18/20 circulating amino acids in males and 11/20 in females, and this pattern was reversed by EMPA. Finally, we confirmed that SGLT2 inhibition upregulates ketone bodies including b-hydroxybutyrate. Collectively, this study highlights the metabolic changes that occur with EMPA treatment, and sheds light on the possible mechanisms by which this drug offers liver and systemic protection.

SELECTION OF CITATIONS
SEARCH DETAIL
...