Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570613

ABSTRACT

The present study reports on a 2D lamellar coordination polymer (CP) of {[Zn(µ3-pmdc)(H2O)]·H2O}n formula (pmdc = pyrimidine-4,6-dicarboxylate). This CP is synthesized under an appropriate acid-base reaction between the gently mortared reagents in the solid state through a solvent-free procedure that avoids the presence of concomitant byproducts. The X-ray crystal structure reveals the occurrence of Zn2 entities connected through carboxylate groups of pmdc, which behave as triconnected nodes, giving rise to six-membered ring-based layers that are piled up through hydrogen bonding interactions. In addition to a routine physico-chemical characterization, the thermal evolution of the compound has been studied by combining thermogravimetric and thermodiffractometric data. The photoluminescence properties are characterized in the solid state and the processes governing the spectra are described using time-dependent density-functional theory (TD-DFT) with two different approaches employing different program packages. The emissive capacity of the material is further analyzed according to the dehydration and decreasing temperature of the polycrystalline sample.

2.
Organometallics ; 41(23): 3654-3663, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-37559938

ABSTRACT

Aliphatic diamines [(H2N(CH2)nNHR) (a-d) n = 2: R = H (a), R = CH3 (b), R = C2H5 (c), n = 3, R = H (d) or rac-2-(aminomethyl)piperidine (e)] react with [IrH(Cl){(PPh2(o-C6H4CO))2H}] in THF to afford ketoimine complexes [IrH(Cl){(PPh2(o-C6H4CO))(PPh2(o-C6H4CN(CH2)nNHR))H}] (2a-2d) or [IrH(Cl){(PPh2(o-C6H4CO))(PPh2(o-C6H4CNCH2(C5H9NH)))H}] (2e), containing a bridging N-H···O hydrogen bond and a dangling amine. Complex 2e consists of an almost equimolar mixture of two diastereomers. In protic solvents, the dangling amine in complexes 2 displaces chloride to afford cationic acyl-iminium compounds, [IrH(PPh2(o-C6H4CO))(PPh2(o-C6H4CNH(CH2)nNHR))]X (3a-3d, X = Cl) or [IrH(PPh2(o-C6H4CO))(PPh2(o-C6H4CNHCH2(C5H9NH)))]Cl (3e) and (4a-4b, X = ClO4), with new hemilabile terdentate PCNamine ligands adopting a facial disposition. Complexes 3 contain the corresponding phosphorus atom trans to hydride and the amine fragment trans to acyl, while complexes 4 contain the amine trans to hydride. 3b and 4b consist of 80:20 and 95:5 mixtures of diastereomers, respectively, while 3e contains a 65:35 mixture. In the presence of KOH, intermediate cationic acyl-iminium complexes 3 transform into neutral acyl-imine [IrH(PPh2(o-C6H4CO))(PPh2(o-C6H4CN(CH2)nNHR))] derivatives (5) with retention of the stereochemistry. Single-crystal X-ray diffraction analysis was performed on 2a, [3a]Cl, [3b]Cl, [4a]ClO4, and 5b. Complexes 2, 3, and 5 catalyze the methanolysis of ammonia-borane under air to release hydrogen. The highest activity is observed for ketoimine complexes 2.

3.
Dalton Trans ; 48(10): 3300-3313, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30778458

ABSTRACT

The reaction of [RhCl(COD)]2 (COD = 1,5-cyclooctadiene) with racemic PPh2(CH(Ph)CH2CHO) and pyridine (py) led to the oxidative addition of the aldehyde, and a single geometric isomer of [RhHCl(PPh2(CH(Ph)CH2CO))(py)2] (1), with hydride trans to chloride, was obtained as a mixture of two diastereomers in a 95 : 5 ratio; this was in agreement with density functional theory (DFT) calculations. In a chloroform solution, the exchange of hydride by chloride yielded [RhCl2(PPh2(CH(Ph)CH2CO))(py)2] (2) as a mixture of a kinetically preferred species, trans-py-2a, and two diastereomers, cis-Cl-2b' and cis-Cl-2b, with cis pyridines and a chloride trans to acyl; as predicted by the DFT calculations, the latter was the major species. Complex 1 reacted with racemic PPh2(CH(Ph)CH2CHO) or PPh2(o-C6H4CHO) to afford [RhHCl(PPh2(CH(Ph)CH2CO))(κ1-PPh2(CH(Ph)CH2CHO))(py)] (3) or [RhHCl(PPh2(o-C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))(py)] (4), respectively, both with a dangling alkylaldehyde. Diastereomeric mixtures with the ratios 3a/3a' = 80 : 20 and 4a/4a' = 50 : 50 were obtained. Complex 4 reacted with N-donors to afford cationic [RhH(NN)(PPh2(o-C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))]BPh4 (NN = 1,10-phenanthroline, 5; 2,2'-bipyridine, 6) or with 8-aminoquinoline (aqui) or 2-(aminomethyl)pyridine to yield imination products with terdentate ligands: [RhH(PPh2(o-C6H4CO))(κ3-PNN)]BF4 (PNN = PPh2(CH(Ph)CH2CNC9H6N), 7 and PPh2(CH(Ph)CH2CNCH2C5H4N), 8, respectively. Compounds 5-8 were obtained as equimolar a/a' mixtures of diastereomers. Moreover, 5a and 5a' could be separated. [RhCl(NBD)]2 reacted with racemic PPh2(CH(Ph)CH2CHO) and N-donors to provide nortricyclyl (Ntyl) derivatives [RhCl(NN)(Ntyl)(PPh2CH(Ph)CH2CO)] (NN = phen, 9 and bipy, 10) as an a/a' = 75 : 25 mixture of diastereomers. By reacting [RhCl(NBD)]2 with PPh2(CH(Ph)CH2CHO) and quinoline-8-carbaldehyde in methanol, the phosphino-ester complex [RhCl(Ntyl)(C9H6NCO)(κ2-PPh2CH(Ph)CH2CO(OCH3)] 11 was obtained. The initial equimolar mixture of two diastereomers readily transformed into a single diastereomer, which was found to be thermodynamically most stable by the DFT calculations. Furthermore, single crystal X-ray diffraction analysis of cis-Cl-2b, 5a, 7a, 10a and 11 is reported.

4.
Inorg Chem ; 57(9): 5307-5319, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29659263

ABSTRACT

Acyl(σ-norbornenyl)rhodium(III) dimer [Rh(µ-Cl)(C9H6NCO)(C7H9)L]2 (1) (C7H9 = σ-norbornenyl; L = 4-picoline, isoquinoline) reacts with diphenylphosphine oxide (SPO) to undergo a one-pot reaction involving (i) cleavage of the chloride bridges and coordination of the phosphine, (ii) C-C bond coupling between acyl and norbornenyl in a 18e species, and (iii) ligand-assisted outer-sphere O(P)-to-O(C) hydrogen transfer, to afford mononuclear 16e species [RhCl{(C9H6NC(O)C7H9)(Ph2PO)H}(L)] (2) containing a quinolinyl-(norbornenylhydroxyalkyl) fragment hydrogen-bonded to a κ1- P-phosphinite ligand. Pentacoordinated 2, which adopt a distorted trigonal bipyramidal structure, are kinetic reaction products that transform into the thermodynamic favored isomers 3. Structures 3 contain an unusual weak η1-C anagostic interaction involving the rhodium atom and one carbon atom of the olefinic C-H bond of the norbornenyl substituent in the chelating quinolinyl-hydroxyalkyl moiety. Their structure can be described as pseudoctahedral, through a 5 + 1 coordination, with the anagostic interaction in a trans disposition with respect to the phosphorus atom of the phosphinite ligand. Complexes were characterized in solution by NMR spectroscopy and electrospray ionization mass spectrometry. Complex [RhCl{(C9H6NC(O)C7H9)(Ph2PO)H}(4-picoline)] (3a) was also identified by X-ray diffraction. Density functional theory calculations confirm the proposed structures by a plausible set of mechanisms that accounts for the 1 (monomer) → 2 → 3 transformation. Lowest-energy pathways involve reductive elimination of quinolinylnorbornenylketone, still coordinated in the rhodium(I) species thus formed, followed by O-to-O hydrogen transfer from κ1- P-SPO to the sp3 hybridized carbonyl group (formal alkoxide) avoiding the otherwise expected classical release of ketone. Theoretical 13C NMR studies also confirm the experimental spectral data for the considered structures.

5.
Inorg Chem ; 55(20): 10284-10293, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27689907

ABSTRACT

Unprecedented metallapyrazoles [IrH2{Ph2P(o-C6H4)CNNHC(o-C6H4)PPh2}] (3) and [IrHCl{Ph2P(o-C6H4)CNNHC(o-C6H4)PPh2}] (4) were obtained by the reaction of the irida-ß-ketoimine [IrHCl{(PPh2(o-C6H4CO))(PPh2(o-C6H4CNNH2))H}] (2) in MeOH heated at reflux in the presence and absence of KOH, respectively. In solution, iridapyrazole 3 undergoes a dynamic process due to prototropic tautomerism with an experimental barrier for the exchange of ΔGcoal⧧ = 53.7 kJ mol-1. DFT calculations agreed with an intrapyrazole proton transfer process assisted by two water molecules (ΔG = 63.1 kJ mol-1). An X-ray diffraction study on 4 indicated electron delocalization in the iridapyrazole ring. The reaction of the irida-ß-diketone [IrHCl{(PPh2(o-C6H4CO))2H}] (1) with H2NNRR' in aprotic solvents gave irida-ß-ketoimines [IrHCl{(PPh2(o-C6H4CO))(PPh2(o-C6H4CNNRR'))H}] (R = R' = Me (5); R = H, R' = Ph (8)), which can undergo N-N bond cleavage to afford the acyl-amide complex [IrHCl(PPh2(o-C6H4CO))(PPh2(o-C6H4C(O)N(CH3)2))-κP,κO] (6) or [IrHCl(PPh2(o-C6H4CO))(PPh2(o-C6H4CN)-κP)(NH2NHPh-κNH2)] (9) containing o-(diphenylphosphine)benzonitrile and phenylhydrazine, respectively. From a CH2Cl2/CH3OH solution of 9 kept at -18 °C, single crystals of [IrHCl(PPh2(o-C6H4CO))(PPh2(o-C6H4CN)-κP))(HN═NPh-κNH)] (10) containing o-(diphenylphosphine)benzonitrile and phenyldiazene were formed, as shown by X-ray diffraction. The reaction of 1 with methylhydrazine in methanol gave the hydrazine complex [IrCl(PPh2(o-C6H4CO))2(NH2NH(CH3)-κNH2)] (7). Single-crystal X-ray diffraction analysis was performed on 6 and 7.

6.
Dalton Trans ; 44(29): 13141-55, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26107554

ABSTRACT

The reaction of [{RhCl(COD)}2] (COD = 1,5-cyclooctadiene) with L = pyrazole (Hpz), 3(5)-methylpyrazole (Hmpz) or 3,5-dimethylpyrazole (Hdmpz) and PPh2(o-C6H4CHO) (Rh : L : P = 1 : 2 : 1) gives hydridoacyl complexes [RhHCl{PPh2(o-C6H4CO)}(L)2] (). Stereoselective formation of and with pyrazoles trans to hydrido and phosphorus and hydrogen bond formation with O-acyl and chlorido occur. is a mixture of two linkage isomers in a 9 : 1 ratio, with two 5-methylpyrazole ligands or with one 3- and one 5-methylpyrazole ligand, respectively. Fluxional undergoes metallotropic tautomerization and is a mixture of equal amounts of and , with hydrido trans to pyrazole or chlorido, respectively. Complexes readily exchange hydrido by chlorido to afford [RhCl2{PPh2(o-C6H4CO)}(L)2] (, and ) as single isomers with cis chloridos and two N-HCl hydrogen bonds. The reaction of with PPh3 or PPh2OH affords static [RhHCl{PPh2(o-C6H4CO)}(PPh3)L] () or [RhHCl{PPh2(o-C6H4CO)}(PPh2OH)L] () respectively with trans P-atoms and pyrazoles forming N-HCl hydrogen bonds. and contain single species with hydrido cis to chlorido, while is a mixture of equal amounts of and . Complexes , with an additional O-HO hydrogen bond, selectively contain only the cis-H,Cl species with all the three ligands. The reaction of [{RhCl(COD)}2] with L and PPh2(o-C6H4CHO) (Rh : L : P = 1 : 1 : 2) led to complexes with trans P-atoms, [RhHCl{PPh2(o-C6H4CO)}{PPh2(o-C6H4CHO)-κP}L] (, and ), at room temperature, and to [RhCl{PPh2(o-C6H4CO)}{PPh2(o-C6H4CHOH)}(Hmpz)] () or [RhCl{PPh2(o-C6H4CO)}2L] () with hydrogen evolution in refluxing benzene. DFT calculations were used to predict the correct isomers, their ratios and the particular intramolecular hydrogen bonds in these complexes. Single crystal X-ray diffraction analysis was performed on , and . Complexes are efficient homogeneous catalysts (0.5 mol% loading) in the hydrolysis of amine- or ammonia-borane (AB) to generate up to 3 equivalents of hydrogen in the presence of air.

7.
Dalton Trans ; 42(32): 11652-60, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23851379

ABSTRACT

The dihydridoirida-ß-diketone [IrH2{(PPh2(o-C6H4CO))2H}] (2) has been used as a homogeneous catalyst for the hydrolysis of ammonia- or amine-boranes to generate up to 3 equivalents of hydrogen in the presence of air. When using 0.5 mol% loading of 2, dimethylamine-borane is hydrolysed completely within 8 min at 30 °C and maintains its activity in consecutive runs. Ammonia-borane or tert-butylamine-borane is hydrolysed completely within 32 or 25 min respectively. Triethylamine-borane fails to be hydrolysed. Kinetic studies suggest a sequence of two consecutive first-order reactions, in which an intermediate builds up and finally falls, with the first step being the rate controlling step. ΔH1(‡) are in the range 65-85 kJ mol(-1) and negative values of ΔS1(‡) are obtained. A multinuclear NMR study of the catalyzed reaction shows the formation of a resting state (A) of the active catalyst proposed to be of the hydridodiacyl type [IrH(PPh2(o-C6H4CO))2(solvent)] with a hydride trans to the acyl group. In the absence of substrate a dormant species (B) is formed. By the reaction of hydridoirida-ß-diketones with ammonia, the hydridoirida-ß-ketoimine [IrHCl{(PPh2(o-C6H4CO))(PPh2(o-C6H4CNH))H}] (3) and the hydridobis(acylphosphane)aminoiridium(III) complex [IrH(PPh2(o-C6H4CO))2(NH3)] (4), with a hydride trans to phosphane, are formed. Aromatic amines such as aniline or anisidines afford cationic [IrH{(PPh2(o-C6H4CO))2H}(C6H4RNH2)]ClO4 (R = H (6); p-MeO (7); o-MeO (8)) hydridoirida-ß-diketones with a coordinated amine group trans to the hydride. The dormant species B is proposed to be of the hydridobis(acylphosphine)aminoiridium(III) type with a hydride trans to the amine group.

8.
Inorg Chem ; 51(3): 1760-8, 2012 Feb 06.
Article in English | MEDLINE | ID: mdl-22257029

ABSTRACT

The hydridoirida-ß-diketone [IrHCl{(PPh(2)(o-C(6)H(4)CO))(2)H}] (1) reacts with benzylamine (C(6)H(5)CH(2)NH(2)) to give the hydridoirida-ß-ketoimine [IrHCl{(PPh(2)(o-C(6)H(4)CO))(PPh(2)(o-C(6)H(4)CNCH(2)C(6)H(5)))H}] (2), stabilized by an intramolecular hydrogen bond. 2 reacts with water to undergo hydrolysis and amine coordination giving hydridodiacylamino [IrH(PPh(2)(o-C(6)H(4)CO))(2)(C(6)H(5)CH(2)NH(2))] (3). Cyclohexylamine or dimethylamine lead to hydridodiacylamino [IrH(PPh(2)(o-C(6)H(4)CO))(2)L] (4-5). In chlorinated solvents hydridodiacylamino complexes undergo exchange of hydride by chloride to afford [IrCl(PPh(2)(o-C(6)H(4)CO))(2)L] (6-9). The reaction of 1 with hydrazine (H(2)NNH(2)) gives hydridoirida-ß-ketoimine [IrHCl{(PPh(2)(o-C(6)H(4)CO))(PPh(2)(o-C(6)H(4)CNNH(2)))H}] (10), fluxional in solution with values for ΔH(‡) of 2.5 ± 0.3 kcal mol(-1) and for ΔS(‡) of -32.9 ± 3 eu. A hydrolysis/imination sequence can be responsible for fluxionality. 2-Aminopyridines (RHNC(5)H(3)R'N) react with 1 to afford cis-[IrCl(PPh(2)(o-C(6)H(4)CO))(PPh(2)(o-C(6)H(4)CHNRC(5)H(3)R'N))] (R = R' = H (11), R = CH(3), R' = H (12), R = H, R' = CH(3) (13)) containing new terdentate PCN ligands in a facial disposition and cis phosphorus atoms as kinetic products. The formation of 11-13 requires imination of the hydroxycarbene moiety of 1, coordination of the nitrogen atom of pyridine to iridium, and iridium to carbon hydrogen transfer. In refluxing methanol, complexes 11-13 isomerize to afford the thermodynamic products 14-16 with trans phosphorus atoms. Chloride abstraction from complexes [IrCl(PPh(2)(o-C(6)H(4)CO))(PPh(2)(o-C(6)H(4)CHNRC(5)H(4)N))] (R = H or CH(3)) leads to decarbonylation of the acylphosphine chelating group to afford cationic complexes [Ir(CO)(PPh(2)(o-C(6)H(4)))(PPh(2)(o-C(6)H(4)CHNRC(5)H(4)N))]A, 17 (R = H, A = ClO(4)) and 18 (R = CH(3), A = BF(4)) as a cis/trans = 4:1 mixture of isomers. Single crystal X-ray diffraction analysis was performed on 6, 9, 13, and 14.

9.
Inorg Chem ; 45(4): 1418-20, 2006 Feb 20.
Article in English | MEDLINE | ID: mdl-16471947

ABSTRACT

Changes in the optical properties of an alkynyldigold(I) complex upon reaction with Cu(I) are associated with a complicated structural change to form an unusual Au4Cu2 cluster with metallophilic interactions as well as pi-alkyne coordination.

SELECTION OF CITATIONS
SEARCH DETAIL
...