Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 811-827, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34962861

ABSTRACT

Most existing deep neural networks are static, which means they can only perform inference at a fixed complexity. But the resource budget can vary substantially across different devices. Even on a single device, the affordable budget can change with different scenarios, and repeatedly training networks for each required budget would be incredibly expensive. Therefore, in this work, we propose a general method called MutualNet to train a single network that can run at a diverse set of resource constraints. Our method trains a cohort of model configurations with various network widths and input resolutions. This mutual learning scheme not only allows the model to run at different width-resolution configurations but also transfers the unique knowledge among these configurations, helping the model to learn stronger representations overall. MutualNet is a general training methodology that can be applied to various network structures (e.g., 2D networks: MobileNets, ResNet, 3D networks: SlowFast, X3D) and various tasks (e.g., image classification, object detection, segmentation, and action recognition), and is demonstrated to achieve consistent improvements on a variety of datasets. Since we only train the model once, it also greatly reduces the training cost compared to independently training several models. Surprisingly, MutualNet can also be used to significantly boost the performance of a single network, if dynamic resource constraints are not a concern. In summary, MutualNet is a unified method for both static and adaptive, 2D and 3D networks. Code and pre-trained models are available at https://github.com/taoyang1122/MutualNet.

2.
Proc IEEE Int Conf Comput Vis ; 2023: 3923-3933, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38638407

ABSTRACT

Personalized federated learning has received an upsurge of attention due to the mediocre performance of conventional federated learning (FL) over heterogeneous data. Unlike conventional FL which trains a single global consensus model, personalized FL allows different models for different clients. However, existing personalized FL algorithms only implicitly transfer the collaborative knowledge across the federation by embedding the knowledge into the aggregated model or regularization. We observed that this implicit knowledge transfer fails to maximize the potential of each client's empirical risk toward other clients. Based on our observation, in this work, we propose Personalized Global Federated Learning (PGFed), a novel personalized FL framework that enables each client to personalize its own global objective by explicitly and adaptively aggregating the empirical risks of itself and other clients. To avoid massive (O(N2)) communication overhead and potential privacy leakage while achieving this, each client's risk is estimated through a first-order approximation for other clients' adaptive risk aggregation. On top of PGFed, we develop a momentum upgrade, dubbed PGFedMo, to more efficiently utilize clients' empirical risks. Our extensive experiments on four datasets under different federated settings show consistent improvements of PGFed over previous state-of-the-art methods. The code is publicly available at https://github.com/ljaiverson/pgfed.

SELECTION OF CITATIONS
SEARCH DETAIL
...