Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 16(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732766

ABSTRACT

A new, sustainable polypropylene terephthalate (PPT) coating was synthesized from recycled polyethylene terephthalate (PET) and applied onto a hydraulic concrete substrate to improve its durability. For the first step, PET bottle wastes were ground and depolymerized by glycolysis using propylene glycol (PG) in a vessel-type reactor (20-180 °C) to synthesize bis(2-hydroxypropyl)-terephthalate (BHPT), which was applied as a coating to one to three layers of hydraulic concrete substrate using the brushing technique and polymerized (150 °C for 15 h) to obtain PPT. PET, BHPT, and PPT were characterized by FT-IR, PET, and PPT using TGA, and the PPT coatings by SEM (thickness), ASTM-D3359-17 (adhesion), and water contact angle (wettability). The durability of hydraulic concrete coated with PPT was studied using resist chloride ion penetration (ASTM-C1202-17), carbonation depth at 28 days (RILEM-CPC-18), and the absorption water ratio (ASTM-C1585-20). The results demonstrated that the BHPT and PPT were synthetized (FT-IR), and PPT had a similar thermal behavior to PET (TGA); the PPT coatings had good adhesion to the substrate, with thicknesses of micrometric units. PPT coatings presented hydrophilic hydrophilic behavior like PET coatings, and the durability of hydraulic concrete coated with PPT (2-3 layers) improved (migration of chloride ions decreased, carbonation depth was negligible, and the absorption water ratio decreased).

2.
Materials (Basel) ; 10(2)2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28772540

ABSTRACT

In the field of construction, sustainable building materials are currently undergoing a process of technological development. This study aims to contribute to understanding the behavior of the fundamental properties of concretes prepared with recycled coarse aggregates that incorporate a polyethylene terephthalate (PET)-based additive in their matrix (produced by synthesis and glycolysis of recycled PET bottles) in an attempt to reduce their high porosity. Techniques to measure the gas adsorption, water porosity, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to evaluate the effect of the additive on the physical, mechanical and microstructural properties of these concretes. Porosity reductions of up to 30.60% are achieved with the addition of 1%, 3%, 4%, 5%, 7% and 9% of the additive, defining a new state in the behavioral model of the additive (the overdosage point) in the concrete matrix; in addition, the porous network of these concretes and their correlation with other physical and mechanical properties are also explained.

SELECTION OF CITATIONS
SEARCH DETAIL