Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 188(10): 359, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599426

ABSTRACT

Multiplex detection of emerging pollutants is essential to improve quality control of water treatment plants, which requires portable systems capable of real-time monitoring. In this paper we describe a flexible, dual electrochemical sensing device that detects nonylphenol and paroxetine in tap water samples. The platform contains two voltammetric sensors, with different working electrodes that were either pretreated or functionalized. Each working electrode was judiciously tailored to cover the concentration range of interest for nonylphenol and paroxetine, and square wave voltammetry was used for detection. An electrochemical pretreatment with sulfuric acid on the printed electrode enabled a selective detection of nonylphenol in 1.0-10 × 10-6 mol L-1 range with a limit of detection of 8.0 × 10-7 mol L-1. Paroxetine was detected in the same range with a limit of detection of 6.7 × 10-7 mol L-1 using the printed electrode coated with a layer of carbon spherical shells. Simultaneous detection of the two analytes was achieved in tap water samples within 1 min, with no fouling and no interference effects. The long-term monitoring capability of the dual sensor was demonstrated in phosphate buffer for 45 days. This performance is statistically equivalent to that of high-performance liquid chromatography (HPLC) for water analysis. The dual-sensor platform is generic and may be extended to other water pollutants and clinical biomarkers in real-time monitoring of the environment and health conditions. Silver pseudo-reference electrodes for paroxetine (REP) and nonylphenol (REN), working electrodes for paroxetine (WP) and nonylphenol (WN), and auxiliary electrode (AE). USP refers to the University of Sao Paulo. "Red" is reduced form and "Oxi" is oxidized form of analytes.

2.
Talanta ; 174: 652-659, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28738637

ABSTRACT

We report the electrochemical detection of estriol using carbon black nanoballs (CNB) decorated with silver nanoparticles (AgNP) as electrode material. Homogeneous, porous films on glassy carbon electrodes (GCE) were obtained, with diameters of 20 - 25nm for CNB and 5 - 6nm for AgNP. CNB/AgNP electrodes had increased conductivity and electroactive area in comparison with bare GCE and GCE/CNB, according to cyclic voltammetry and electrochemical impedance spectroscopy. The oxidation potential peak was also down shifted by 93mV, compared to the bare GC electrode. Differential pulse voltammetry data were obtained in 0.1molL-1 PBS (pH 7.0) to detect estriol without the purification step, in the linear range between 0.2 and 3.0µmolL-1 with detection and quantification limits of 0.16 and 0.5µmolL-1 (0.04 and 0.16mgL-1), respectively. The sensor was used to detect estriol in a creek water sample with the same performance as in the official methodology based on high performance liquid chromatography.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Estriol/analysis , Hormones/analysis , Limit of Detection , Silver/chemistry , Soot/chemistry , Water/chemistry , Electrochemistry , Endocrine Disruptors/analysis , Oxidation-Reduction , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...