Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 193: 214-220, 2016 Dec 04.
Article in English | MEDLINE | ID: mdl-27435375

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cecropia pachystachya is a medicinal plant native to South and Central Americas used to treat asthma and diabetes. AIM OF THE STUDY: In this study, we evaluated the genotoxic, mutagenic and antigenotoxic effects of crude aqueous extract of C. pachystachya (CAE-Cp) leaves. MATERIAL AND METHODS: CAE-Cp was analyzed by the Folin-Ciocalteu method to determine total phenolic and tannin contents. High performance liquid chromatography (HPLC) was used to identify major compounds. Distinct tissues from female and male adult mice were treated with 500-2000mg/kg of CAE-Cp by gavage for the comet assay and micronucleus test analyses. In addition, peripheral blood slides of the group treated with 2000mg/kg CAE-Cp were analyzed 3, 6, and 24h after treatment and were exposed to hydrogen peroxide (ex vivo) to evaluate the genotoxic effect using the comet assay. The Salmonella/microsome assay was carried out against to TA100, TA98, TA97a, TA102, and TA1535 strains in presence and absence of the S9 mix. RESULTS: HPLC showed the presence of chlorogenic acid, isoorientin, orientin, and isovitexin as major compounds. Total phenolic and tannin contents were, respectively, 305.6±0.80 and 144.6±19.04mg of gallic acid equivalent/g of extract. Brain DNA damage was observed in all groups treated with CAE-Cp. The H2O2 challenge indicated genotoxic effect only 6h after the administration of the extract. No increase was detected in micronucleus frequency for any group treated with the extract. Mutagenic effects were detected by Salmonella/microsome assay only in TA102 strain without S9 mix at higher doses. CONCLUSION: The results obtained indicate that CAE-Cp was genotoxic to brain tissue. This result is supported by other papers, showing that compounds present in this extract can cross the blood-brain barrier and act on central nervous system.


Subject(s)
Antimutagenic Agents/pharmacology , Cecropia Plant/chemistry , Mutagens/toxicity , Plant Extracts/pharmacology , Animals , Female , In Vitro Techniques , Male , Mice , Mutagenicity Tests , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...