Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38753493

ABSTRACT

The development of a new heating system dedicated to in situ scanning electron microscope (SEM) experimentation at high temperatures is reported. This system, called FurnaSEM, is a compact microfurnace, enabling heat treatments up to 1300 °C. The choice of materials for the microfurnace is explained. The design of the microfurnace is optimized by iterations of numerical simulations, and the thermal characteristics of the microfurnace are calculated numerically. The numerical results obtained are compared with the thermal characteristics of a manufactured microfurnace, measured on a specially developed dedicated test bench. This test bench includes a working chamber simulating a SEM chamber equipped with a thermal camera. The results obtained during various qualification tests enabled us to determine the main technical characteristics of the FurnaSEM microfurnace: temperature profiles on the sample support surface, energy consumption at high temperatures, and the range of achievable thermal cycles.

2.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38753494

ABSTRACT

When conducting in situ experiments at high temperatures in a scanning electron microscope using microfurnaces, controlling the temperature of a sample of a few mm3 placed in the hot zone of the furnace can be a complex task. In most cases, the temperature of the sample is estimated by means of a thermocouple placed in the hot body of the furnace, and the assumption made is that the temperature of the furnace is the temperature of the sample. In this work, a detailed understanding of the thermal response of the sample placed in the hot zone of the furnace is proposed. Temperature differences due to contact resistance between the furnace surface and the sample, the nature of the sample, and the sample geometry are calculated with a numerical model and measured experimentally on a dedicated test bench. Three technical solutions (bonding, sandwiching, and mini-crucible) for limiting temperature differences between the furnace surface and sample are proposed and validated by numerical calculations and experimental measurements.

3.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38753495

ABSTRACT

The FurnaSEM microfurnace was installed in the chamber of a scanning electron microscope to carry out in situ experiments at high temperatures and test its limits. The microfurnace was used in combination with different types of detectors (Everhart-Thornley for the collection of secondary electrons in a high vacuum, gas secondary electron detector for the specific collection of secondary electrons in the presence of gas, and Karmen© detector for the collection of backscattered electrons at high temperature). Experiments carried out on various samples (metal alloys and ceramics) show that the microfurnace operates in both high-vacuum and low-vacuum modes. Temperature ramp rates during temperature cycles applied to the sample range from 1 to 120 °C/min (temperature rise) and 1 to 480 °C/min (controlled and natural cooling). The maximum temperature at which images were recorded up to 25 k × magnification was 1340 °C, with a residual air atmosphere of 120 Pa. The choice of a flat furnace with the sample placed directly above it has enabled innovative experiments to be carried out, such as low-voltage imaging (using a shorter working distance-up to 10 mm-than is possible with conventional furnaces), 3D imaging (by tilting the stage by up to 10°), and high-temperature backscattered electron imaging (using a dedicated detector).

4.
Microsc Microanal ; 26(3): 397-402, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32241326

ABSTRACT

High-temperature scanning electron microscopy allows the direct study of the temperature behavior of materials. Using a newly developed heating stage, tilted images series were recorded at high temperature and 3D images of the sample surface were reconstructed. By combining 3D images recorded at different temperatures, the variations of material roughness can be accurately described and associated with local changes in the topography of the sample surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...