Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 92(3): 371-8, 2016 05.
Article in English | MEDLINE | ID: mdl-27010848

ABSTRACT

Strontium titanate nanoparticles have attracted much attention due to their physical and chemical properties, especially as photocatalysts under ultraviolet irradiation. In this paper, we analyze the effect of heating rate during the crystallization process of SrTiO3 nanoparticles in the degradation of organic pollutants. The relationship between structural, morphological and photocatalytic properties of the SrTiO3 nanoparticles was investigated using different techniques. Transmission electron microscopy and N2 adsorption results show that particle size and surface properties are tuned by the heating rate of the SrTiO3 crystallization process. The SrTiO3 nanoparticles showed good photoactivity for the degradation of methylene blue, rhodamine B and methyl orange dyes, driven by a nonselective process. The SrTiO3 sample with the largest particle size exhibited higher photoactivity per unit area, independent of the molecule to be degraded. The results pointed out that the photodegradation of methylene blue dye catalyzed by SrTiO3 is caused by the action of valence band holes (direct pathway), and the indirect mechanism has a negligible effect, i.e. degradation by O2 (-•) and (•) OH radicals attack.


Subject(s)
Coloring Agents/chemistry , Metal Nanoparticles/chemistry , Oxides/chemistry , Photochemical Processes , Strontium/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Azo Compounds/chemistry , Catalysis , Methylene Blue/chemistry , Rhodamines/chemistry , Waste Disposal, Fluid , Water Purification
2.
Photochem Photobiol ; 90(1): 66-72, 2014 01.
Article in English | MEDLINE | ID: mdl-24107092

ABSTRACT

Despite photocatalytic degradation is studied generally focusing the catalyst, its interaction with the contaminant molecule plays a fundamental role in the efficiency of that process. Then, we proposed a comparative study about the photodegradation of two well-known dyes, with different acidity/basicity - Methylene Blue (MB) and Rhodamine B (RhB), catalyzed by TiO2 nanoparticles, varying both dye and photocatalyst concentrations. The results showed that the amphoteric character of MB molecules, even in a range of concentration of 5.0-10.0 mg L(-1) , did not imply in pH variation in solution. Therefore, it did not affect the colloidal behavior of TiO2 nanoparticles, independent of the relative dye/catalyst concentration. The acid-base character of RhB influenced the resultant pH of the solution, implicating in different colloidal behavior of the nanoparticles and consequently, in different degradation conditions according to dye concentration. As the isoelectric point of TiO2 is between the pH range of the RhB solutions used in this study, from 1.0 to 7.5 mg L(-1) , the resultant pH was the key factor for degradation conditions, from a well dispersed to an agglomerated suspension.

3.
J Nanosci Nanotechnol ; 11(4): 3635-40, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21776748

ABSTRACT

This paper describes the development of ZnO nanoparticles by a chemical method, to test them in the photocatalysis of the degradation of textile dyes, using Rhodamine B (RhB) as a probe reaction. The samples were submitted to different heat treatments in order to observe the annealing effects on the photocatalytical properties, surface decontamination and the consequent particle change, in terms of crystallinity. The as-prepared samples (ZOA) correspond to a metastable phase (oxy or hydroxy zinc acetate) and post annealing leads to ZnO crystallization. In spite of the XRD patterns showing only the ZnO phase for heat treatment at 100 degrees C, FTIR data show that carboxylate groups remains attached to the ZnO surface up to 300 degrees C. Up to 300 degrees C the presence of these carboxylate groups, provided by the synthesis method, showed to be more relevant to photoactivity than the specific surface area. At higher temperatures, crystallinity becomes the dominant factor and an increasing of crystallinity favors the photoactivity.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Zinc Oxide/chemistry , Zinc Oxide/radiation effects , Catalysis , Hardness , Hot Temperature , Light , Materials Testing , Molecular Conformation/radiation effects , Nanostructures/radiation effects , Particle Size , Surface Properties/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...