Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597390

ABSTRACT

Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.


Subject(s)
Alternative Splicing , Exons , Neurons , Polypyrimidine Tract-Binding Protein , Protein Serine-Threonine Kinases , Animals , Humans , Mice , Exons/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Phosphorylation , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
2.
Sci Signal ; 14(691)2021 07 13.
Article in English | MEDLINE | ID: mdl-34257105

ABSTRACT

Synaptic plasticity involves structural modifications in dendritic spines that are modulated by local protein synthesis and actin remodeling. Here, we investigated the molecular mechanisms that connect synaptic stimulation to these processes. We found that the phosphorylation of isoform-specific sites in eEF1A2-an essential translation elongation factor in neurons-is a key modulator of structural plasticity in dendritic spines. Expression of a nonphosphorylatable eEF1A2 mutant stimulated mRNA translation but reduced actin dynamics and spine density. By contrast, a phosphomimetic eEF1A2 mutant exhibited decreased association with F-actin and was inactive as a translation elongation factor. Activation of metabotropic glutamate receptor signaling triggered transient dissociation of eEF1A2 from its regulatory guanine exchange factor (GEF) protein in dendritic spines in a phosphorylation-dependent manner. We propose that eEF1A2 establishes a cross-talk mechanism that coordinates translation and actin dynamics during spine remodeling.


Subject(s)
Actins , Dendritic Spines , Peptide Elongation Factor 1/metabolism , Protein Biosynthesis , Actin Cytoskeleton , Actins/genetics , Neuronal Plasticity , Neurons
3.
J Cell Biol ; 220(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33480968

ABSTRACT

Stress granules (SGs) are conserved biomolecular condensates that originate in response to many stress conditions. These membraneless organelles contain nontranslating mRNAs and a diverse subproteome, but our knowledge of their regulation and functional relevance is still incipient. Here, we describe a mutual-inhibition interplay between SGs and Cdc28, the budding yeast Cdk. Among Cdc28 interactors acting as negative modulators of Start, we have identified Whi8, an RNA-binding protein that localizes to SGs and recruits the mRNA of CLN3, the most upstream G1 cyclin, for efficient translation inhibition and Cdk inactivation under stress. However, Whi8 also contributes to recruiting Cdc28 to SGs, where it acts to promote their dissolution. As predicted by a mutual-inhibition framework, the SG constitutes a bistable system that is modulated by Cdk. Since mammalian cells display a homologous mechanism, we propose that the opposing functions of specific mRNA-binding proteins and Cdk's subjugate SG dynamics to a conserved hysteretic switch.


Subject(s)
CDC28 Protein Kinase, S cerevisiae/metabolism , Cytoplasmic Granules/metabolism , Saccharomyces cerevisiae/metabolism , Stress, Physiological , Cell Cycle , Cyclins/metabolism , HeLa Cells , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Models, Biological , Protein Binding , Protein Biosynthesis , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...