Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Water Sci Technol ; 79(8): 1534-1540, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31169511

ABSTRACT

This work presents modelling of an anaerobic biofilm reactor using ceramic bricks as support. The results were compared with the experimental data. It was observed that the substrate concentration curves showed the same tendency. The methane formation curves showed significant differences. The substrate removal efficiency was 83%. In the steady state, the experimental data were higher than the model, from the result the substrate degrading bacteria grew enough to reach biofilm and that the effect of the shear stress was more significant as the biofilm increased in thickness. To the methane production, the model in steady state reached a maximum value of 0.56 m3 CH4/m3 *d and the experimental data reached 0.42 (m3 CH4/m3 * d). The biofilm thickness calculated by the model was 14 µm.


Subject(s)
Biofilms , Bioreactors/statistics & numerical data , Models, Statistical , Waste Disposal, Fluid/statistics & numerical data , Anaerobiosis , Bacteria , Hydrolysis , Methane
2.
Waste Manag ; 29(2): 704-11, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18707861

ABSTRACT

This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH(4) and CO(2)) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Río Frío Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L(-1) and a concentration of CO(2) of 90%. In this reactor, the fermentative population was predominant (10(5)-10(6)MPN mL(-1)). The acetogenic population was (10(5)MPN mL(-1)) and the sulphate-reducing population was (10(4)-10(5)MPN mL(-1)). In the methanogenic reactor (R2), levels of CH(4) (70%) were higher than CO(2) (25%), whereas the VFA values were lower than 4000 mg L(-1). Substrate competition between sulphate-reducing (10(4)-10(5)MPN mL(-1)) and methanogenic bacteria (10(5)MPN mL(-1)) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH(4)g(-1)VSS(-1)day(-1)) and hydrogenophilic (0.94 g COD-CH(4)g(-1)VSS(-1)day(-1)) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified.


Subject(s)
Bacteria, Anaerobic/metabolism , Methane/chemistry , Methane/metabolism , Refuse Disposal/methods , Sewage/microbiology , Anaerobiosis , Bioreactors , Cities
SELECTION OF CITATIONS
SEARCH DETAIL
...