Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(6): 107322, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38677511

ABSTRACT

Obesity-induced metabolic dysfunction-associated steatohepatitis (MASH) leads to hepatocellular carcinoma (HCC). Astrocyte-elevated gene-1/Metadherin (AEG-1/MTDH) plays a key role in promoting MASH and HCC. AEG-1 is palmitoylated at residue cysteine 75 (Cys75) and a knock-in mouse representing mutated Cys75 to serine (AEG-1-C75S) showed activation of MASH- and HCC-promoting gene signature when compared to wild-type littermates (AEG-1-WT). The liver consists of three zones, periportal, mid-lobular, and pericentral, and zone-specific dysregulated gene expression impairs metabolic homeostasis in the liver, contributing to MASH and HCC. Here, to elucidate how palmitoylation influences AEG-1-mediated gene regulation in regard to hepatic zonation, we performed spatial transcriptomics (ST) in the livers of AEG-1-WT and AEG-1-C75S littermates. ST identified six different clusters in livers and using zone- and cell-type-specific markers we attributed specific zones and cell types to specific clusters. Ingenuity Pathway Analysis (IPA) of differentially expressed genes in each cluster unraveled activation of pro-inflammatory and MASH- and HCC-promoting pathways, mainly in periportal and pericentral hepatocytes, in AEG-1-C75S liver compared to AEG-1-WT. Interestingly, in AEG-1-C75S liver, the mid-lobular zone exhibited widespread inhibition of xenobiotic metabolism pathways and inhibition of PXR/RXR and LXR/RXR activation, versus AEG-1-WT. In conclusion, AEG-1-C75S mutant exhibited zone-specific differential gene expression, which might contribute to metabolic dysfunction and dysregulated drug metabolism leading to MASH and HCC.

2.
Cancers (Basel) ; 15(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37686559

ABSTRACT

African-American (AA)/Black hepatocellular carcinoma (HCC) patients have increased incidence and decreased survival rates compared to non-Hispanic (White) patients, the underlying molecular mechanism of which is not clear. Analysis of existing RNA-sequencing (RNA-seq) data in The Cancer Genome Atlas (TCGA) and in-house RNA-sequencing of 14 White and 18 AA/Black HCC patients revealed statistically significant activation of type I interferon (IFN-I) signaling pathway in AA/Black patients. A four-gene signature of IFN-stimulated genes (ISGs) showed increased expression in AA/Black HCC tumors versus White. HCC is a disease of chronic inflammation, and IFN-Is function as pro-inflammatory cytokines. We tested efficacy of ginger extract (GE), a dietary compound known for anti-inflammatory properties, on HCC cell lines derived from White (HepG2), AA/Black (Hep3B and O/20) and Asian (HuH-7) patients. GE exhibited a significantly lower IC50 on Hep3B and O/20 cells than on HepG2 and HuH-7 cells. The GE treatment inhibited the activation of downstream mediators of IFN-I signaling pathways and expression of ISGs in all four HCC cells. Our data suggest that ginger can potentially attenuate IFN-I-mediated signaling pathways in HCC, and cells from AA/Black HCC patients may be more sensitive to ginger. AA/Black HCC patients might benefit from a holistic diet containing ginger.

3.
Hepatology ; 78(6): 1727-1741, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-36120720

ABSTRACT

BACKGROUND AND AIMS: The oncogene Melanoma differentiation associated gene-9/syndecan binding protein (MDA-9/SDCBP) is overexpressed in many cancers, promoting aggressive, metastatic disease. However, the role of MDA-9 in regulating hepatocellular carcinoma (HCC) has not been well studied. APPROACH AND RESULTS: To unravel the function of MDA-9 in HCC, we generated and characterized a transgenic mouse with hepatocyte-specific overexpression of MDA-9 (Alb/MDA-9). Compared with wild-type (WT) littermates, Alb/MDA-9 mice demonstrated significantly higher incidence of N-nitrosodiethylamine/phenobarbital-induced HCC, with marked activation and infiltration of macrophages. RNA sequencing (RNA-seq) in naive WT and Alb/MDA-9 hepatocytes identified activation of signaling pathways associated with invasion, angiogenesis, and inflammation, especially NF-κB and integrin-linked kinase signaling pathways. In nonparenchymal cells purified from naive livers, single-cell RNA-seq showed activation of Kupffer cells and macrophages in Alb/MDA-9 mice versus WT mice. A robust increase in the expression of Secreted phosphoprotein 1 (Spp1/osteopontin) was observed upon overexpression of MDA-9. Inhibition of NF-κB pathway blocked MDA-9-induced Spp1 induction, and knock down of Spp1 resulted in inhibition of MDA-9-induced macrophage migration, as well as angiogenesis. CONCLUSIONS: Alb/MDA-9 is a mouse model with MDA-9 overexpression in any tissue type. Our findings unravel an HCC-promoting role of MDA-9 mediated by NF-κB and Spp1 and support the rationale of using MDA-9 inhibitors as a potential treatment for aggressive HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Melanoma , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , NF-kappa B/metabolism , Syntenins/genetics , Syntenins/metabolism , Mice, Transgenic , Cell Line, Tumor
4.
Hepatol Commun ; 6(3): 561-575, 2022 03.
Article in English | MEDLINE | ID: mdl-34741448

ABSTRACT

Obesity is an enormous global health problem, and obesity-induced nonalcoholic steatohepatitis (NASH) is contributing to a rising incidence and mortality for hepatocellular carcinoma (HCC). Increase in de novo lipogenesis and decrease in fatty acid ß-oxidation (FAO) underlie hepatic lipid accumulation in NASH. Astrocyte-elevated gene-1/metadherin (AEG-1) overexpression contributes to both NASH and HCC. AEG-1 harbors an LXXLL motif through which it blocks activation of peroxisome proliferator activated receptor α (PPARα), a key regulator of FAO. To better understand the role of LXXLL motif in mediating AEG-1 function, using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, we generated a mouse model (AEG-1-L24K/L25H) in which the LXXLL motif in AEG-1 was mutated to LXXKH. We observed increased activation of PPARα in AEG-1-L24K/L25H livers providing partial protection from high-fat diet-induced steatosis. Interestingly, even with equal gene dosage levels, compared with AEG-1-wild-type livers, AEG-1-L24K/L25H livers exhibited increase in levels of lipogenic enzymes, mitogenic activity and inflammation, which are attributes observed when AEG-1 is overexpressed. These findings indicate that while LXXLL motif favors steatotic activity of AEG-1, it keeps in check inflammatory and oncogenic functions, thus maintaining a homeostasis in AEG-1 function. AEG-1 is being increasingly appreciated as a viable target for ameliorating NASH and NASH-HCC, and as such, in-depth understanding of the functions and molecular attributes of this molecule is essential. Conclusion: The present study unravels the unique role of the LXXLL motif in mediating the balance between the metabolic and oncogenic functions of AEG-1.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Membrane Proteins , Non-alcoholic Fatty Liver Disease , RNA-Binding Proteins , Animals , Astrocytes/metabolism , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Membrane Proteins/genetics , Mice , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics , PPAR alpha/genetics , RNA-Binding Proteins/genetics , Transcription Factors
5.
Hepatol Commun ; 3(9): 1258-1270, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31497746

ABSTRACT

Oncoprotein staphylococcal nuclease and tudor domain containing 1 (SND1) regulates gene expression at a posttranscriptional level in multiple cancers, including hepatocellular carcinoma (HCC). Staphylococcal nuclease (SN) domains of SND1 function as a ribonuclease (RNase), and the tudor domain facilitates protein-oligonucleotide interaction. In the present study, we aimed to identify RNA interactome of SND1 to obtain enhanced insights into gene regulation by SND1. RNA interactome was identified by immunoprecipitation (IP) of RNA using anti-SND1 antibody from human HCC cells followed by RNA immunoprecipitation sequencing (RIP-Seq). Among RNA species that showed more than 10-fold enrichment over the control, we focused on the tumor suppressor protein tyrosine phosphatase nonreceptor type 23 (PTPN23) because its regulation by SND1 and its role in HCC are not known. PTPN23 levels were down-regulated in human HCC cells versus normal hepatocytes and in human HCC tissues versus normal adjacent liver, as revealed by immunohistochemistry. In human HCC cells, knocking down SND1 increased and overexpression of SND1 decreased PTPN23 protein. RNA binding and degradation assays revealed that SND1 binds to and degrades the 3'-untranslated region (UTR) of PTPN23 messenger RNA (mRNA). Tetracycline-inducible PTPN23 overexpression in human HCC cells resulted in significant inhibition in proliferation, migration, and invasion and in vivo tumorigenesis. PTPN23 induction caused inhibition in activation of tyrosine-protein kinase Met (c-Met), epidermal growth factor receptor (EGFR), Src, and focal adhesion kinase (FAK), suggesting that, as a putative phosphatase, PTPN23 inhibits activation of these oncogenic kinases. Conclusion: PTPN23 is a novel target of SND1, and our findings identify PTPN23 as a unique tumor suppressor for HCC. PTPN23 might function as a homeostatic regulator of multiple kinases, restraining their activation.

6.
Cancer Res ; 78(22): 6436-6446, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30181179

ABSTRACT

Chronic inflammation is a known hallmark of cancer and is central to the onset and progression of hepatocellular carcinoma (HCC). Hepatic macrophages play a critical role in the inflammatory process leading to HCC. The oncogene Astrocyte elevated gene-1 (AEG-1) regulates NFκB activation, and germline knockout of AEG-1 in mice (AEG-1-/-) results in resistance to inflammation and experimental HCC. In this study, we developed conditional hepatocyte- and myeloid cell-specific AEG-1-/- mice (AEG-1ΔHEP and AEG-1ΔMAC, respectively) and induced HCC by treatment with N-nitrosodiethylamine (DEN) and phenobarbital (PB). AEG-1ΔHEP mice exhibited a significant reduction in disease severity compared with control littermates, while AEG-1ΔMAC mice were profoundly resistant. In vitro, AEG-1-/- hepatocytes exhibited increased sensitivity to stress and senescence. Notably, AEG-1-/- macrophages were resistant to either M1 or M2 differentiation with significant inhibition in migration, endothelial adhesion, and efferocytosis activity, indicating that AEG-1 ablation renders macrophages functionally anergic. These results unravel a central role of AEG-1 in regulating macrophage activation and indicate that AEG-1 is required in both tumor cells and tumor microenvironment to stimulate hepatocarcinogenesis.Significance: These findings distinguish a novel role of macrophage-derived oncogene AEG-1 from hepatocellular AEG-1 in promoting inflammation and driving tumorigenesis. Cancer Res; 78(22); 6436-46. ©2018 AACR.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Animals , Cell Adhesion , Cell Differentiation , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chemotaxis , Diethylnitrosamine , Hepatocytes/cytology , Hepatocytes/metabolism , Inflammation , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phenobarbital , RNA, Small Interfering/metabolism , RNA-Binding Proteins , Risk Factors , Tumor Microenvironment
7.
Cancer Res ; 77(15): 4014-4025, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28619711

ABSTRACT

Activation of IGF signaling is a major oncogenic event in diverse cancers, including hepatocellular carcinoma (HCC). In this setting, the insulin-like growth factor binding protein IGFBP7 inhibits IGF signaling by binding the IGF1 receptor (IGF1R), functioning as a candidate tumor suppressor. IGFBP7 abrogates tumors by inhibiting angiogenesis and inducing cancer-specific senescence and apoptosis. Here, we report that Igfbp7-deficient mice exhibit constitutively active IGF signaling, presenting with proinflammatory and immunosuppressive microenvironments and spontaneous liver and lung tumors occurring with increased incidence in carcinogen-treated subjects. Igfbp7 deletion increased proliferation and decreased senescence of hepatocytes and mouse embryonic fibroblasts, effects that were blocked by treatment with IGF1 receptor inhibitor. Significant inhibition of genes regulating immune surveillance was observed in Igfbp7-/- murine livers, which was associated with a marked inhibition in antigen cross-presentation by Igfbp7-/- dendritic cells. Conversely, IGFBP7 overexpression inhibited growth of HCC cells in syngeneic immunocompetent mice. Depletion of CD4+ or CD8+ T lymphocytes abolished this growth inhibition, identifying it as an immune-mediated response. Our findings define an immune component of the pleiotropic mechanisms through which IGFBP7 suppresses HCC. Furthermore, they offer a genetically based preclinical proof of concept for IGFBP7 as a therapeutic target for immune management of HCC. Cancer Res; 77(15); 4014-25. ©2017 AACR.


Subject(s)
Carcinoma, Hepatocellular/pathology , Insulin-Like Growth Factor Binding Proteins/deficiency , Liver Neoplasms/pathology , Animals , Blotting, Western , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Disease Models, Animal , Flow Cytometry , Fluorescent Antibody Technique , Immunohistochemistry , Insulin-Like Growth Factor Binding Proteins/genetics , Insulin-Like Growth Factor Binding Proteins/immunology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Real-Time Polymerase Chain Reaction
8.
Cancer Res ; 77(12): 3306-3316, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28428278

ABSTRACT

SND1, a subunit of the miRNA regulatory complex RISC, has been implicated as an oncogene in hepatocellular carcinoma (HCC). In this study, we show that hepatocyte-specific SND1 transgenic mice (Alb/SND1 mice) develop spontaneous HCC with partial penetrance and exhibit more highly aggressive HCC induced by chemical carcinogenesis. Livers from Alb/SND1 mice exhibited a relative increase in inflammatory markers and spheroid-generating tumor-initiating cells (TIC). Mechanistic investigations defined roles for Akt and NF-κB signaling pathways in promoting TIC formation in Alb/SND1 mice. In human xenograft models of subcutaneous or orthotopic HCC, administration of the selective SND1 inhibitor 3', 5'-deoxythymidine bisphosphate (pdTp), inhibited tumor formation without effects on body weight or liver function. Our work establishes an oncogenic role for SND1 in promoting TIC formation and highlights pdTp as a highly selective SND1 inhibitor as a candidate therapeutic lead to treat advanced HCC. Cancer Res; 77(12); 3306-16. ©2017 AACR.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Neoplastic Stem Cells/pathology , Nuclear Proteins/metabolism , Oncogene Proteins/metabolism , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Disease Progression , Endonucleases , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Polymerase Chain Reaction , Thymine Nucleotides/pharmacology
9.
FEBS Lett ; 590(16): 2700-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27339400

ABSTRACT

Astrocyte-elevated gene-1 (AEG-1) positively regulates tumor progression and metastasis. Here, we document that AEG-1 upregulates transcription of the membrane protein tetraspanin 8 (TSPAN8). Knocking down TSPAN8 in AEG-1-overexpressing human hepatocellular carcinoma (HCC) cells markedly inhibited invasion and migration without affecting proliferation. TSPAN8 knockdown profoundly abrogated AEG-1-induced primary tumor and intrahepatic metastasis in an orthopic xenograft model in athymic nude mice. Coculture of TSPAN8 knockdown cells with human umbilical vein endothelial cells (HUVEC) markedly inhibited HUVEC tube formation indicating that inhibition of angiogenesis might cause reduction in primary tumor size. TSPAN8 inhibition might be a potential therapeutic strategy for metastatic HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Adhesion Molecules/genetics , Liver Neoplasms/genetics , Tetraspanins/biosynthesis , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells , Humans , Liver Neoplasms/pathology , Membrane Proteins , Mice , Neoplasm Invasiveness/genetics , Neoplasm Metastasis , RNA-Binding Proteins , Tetraspanins/genetics , Xenograft Model Antitumor Assays
10.
J Biol Chem ; 291(20): 10736-46, 2016 May 13.
Article in English | MEDLINE | ID: mdl-26997225

ABSTRACT

Staphylococcal nuclease and tudor domain containing 1 (SND1) is overexpressed in multiple cancers, including hepatocellular carcinoma (HCC), and functions as an oncogene. This study was carried out to identify novel SND1-interacting proteins to better understand its molecular mechanism of action. SND1-interacting proteins were identified by a modified yeast two-hybrid assay. Protein-protein interaction was confirmed by co-immunoprecipitation analysis. Monoglyceride lipase (MGLL) expression was analyzed by quantitative RT-PCR, Western blot, and immunohistochemistry. MGLL-overexpressing clones were analyzed for cell proliferation and cell cycle analysis and in vivo tumorigenesis in nude mice. MGLL was identified as an SND1-interacting protein. Interaction of SND1 with MGLL resulted in ubiquitination and proteosomal degradation of MGLL. MGLL expression was detected in normal human hepatocytes and mouse liver, although it was undetected in human HCC cell lines. An inverse correlation between SND1 and MGLL levels was identified in a human HCC tissue microarray as well as in the TCGA database. Forced overexpression of MGLL in human HCC cells resulted in marked inhibition in cell proliferation with a significant delay in cell cycle progression and a marked decrease in tumor growth in nude mouse xenograft assays. MGLL overexpression inhibited Akt activation that is independent of enzymatic activity of MGLL and overexpression of a constitutively active Akt rescued cells from inhibition of proliferation and restored normal cell cycle progression. This study unravels a novel mechanism of SND1 function and identifies MGLL as a unique tumor suppressor for HCC. MGLL might function as a homeostatic regulator of Akt restraining its activation.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Cycle , Cell Transformation, Neoplastic/metabolism , Liver Neoplasms/metabolism , Monoacylglycerol Lipases/metabolism , Nuclear Proteins/metabolism , Proteolysis , Tumor Suppressor Proteins/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Endonucleases , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Nude , Monoacylglycerol Lipases/genetics , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-akt/biosynthesis , Proto-Oncogene Proteins c-akt/genetics , Tumor Suppressor Proteins/genetics , Ubiquitination/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...