Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 52(6): 1084-1097, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21398511

ABSTRACT

Increased serum apolipoprotein (apo)B and associated LDL levels are well-correlated with an increased risk of coronary disease. ApoE⁻/⁻ and low density lipoprotein receptor (LDLr)⁻/⁻ mice have been extensively used for studies of coronary atherosclerosis. These animals show atherosclerotic lesions similar to those in humans, but their serum lipids are low in apoB-containing LDL particles. We describe the development of a new mouse model with a human-like lipid profile. Ldlr CETP⁺/⁻ hemizygous mice carry a single copy of the human CETP transgene and a single copy of a LDL receptor mutation. To evaluate the apoB pathways in this mouse model, we used novel short-interfering RNAs (siRNA) formulated in lipid nanoparticles (LNP). ApoB siRNAs induced up to 95% reduction of liver ApoB mRNA and serum apoB protein, and a significant lowering of serum LDL in Ldlr CETP⁺/⁻ mice. ApoB targeting is specific and dose-dependent, and it shows lipid-lowering effects for over three weeks. Although specific triglycerides (TG) were affected by ApoB mRNA knockdown (KD) and the total plasma lipid levels were decreased by 70%, the overall lipid distribution did not change. Results presented here demonstrate a new mouse model for investigating additional targets within the ApoB pathways using the siRNA modality.


Subject(s)
Apolipoproteins B/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol Ester Transfer Proteins/genetics , Cholesterol, LDL/blood , Disease Models, Animal , Receptors, LDL/genetics , Animals , Apolipoproteins B/blood , Apolipoproteins E/blood , Apolipoproteins E/genetics , Atherosclerosis/pathology , Cell Line, Tumor , Cholesterol Ester Transfer Proteins/metabolism , Founder Effect , Gene Expression Profiling , Gene Knockdown Techniques , Hemizygote , Humans , Lipid Metabolism/genetics , Liposomes/metabolism , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nanoparticles/administration & dosage , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Receptors, LDL/metabolism , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...