Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1142892, 2023.
Article in English | MEDLINE | ID: mdl-37274188

ABSTRACT

Introduction: Brain-Computer Interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) have great potential for use in communication applications because of their relatively simple assembly and in some cases the possibility of bypassing the time-consuming training stage. However, among multiple factors, the efficient performance of this technology is highly dependent on the stimulation paradigm applied in combination with the SSVEP detection algorithm employed. This paper proposes the performance assessment of the classification of target events with respect to non-target events by applying four types of visual paradigms, rectangular modulated On-Off (OOR), sinusoidal modulated On-Off (OOS), rectangular modulated Checkerboard (CBR), and sinusoidal modulated Checkerboard (CBS), with three types of SSVEP detection methods, Canonical Correlation Analysis (CCA), Filter-Bank CCA (FBCCA), and Minimum Energy Combination (MEC). Methods: We set up an experimental protocol in which the four types of visual stimuli were presented randomly to twenty-seven participants and after acquiring their electroencephalographic responses to five stimulation frequencies (8.57, 10.909, 15, 20, and 24 Hz), the three detection methods were applied to the collected data. Results: The results are conclusive, obtaining the best performance with the combination of either OOR or OOS visual stimulus and the FBCCA as a detection method, however, this finding contrasts with the opinion of almost half of the participants in terms of visual comfort, where the 51.9% of the subjects felt more comfortable and focused with CBR or CBS stimulation. Discussion: Finally, the EEG recordings correspond to the SSVEP response of 27 subjects to four visual paradigms when selecting five items on a screen, which is useful in BCI navigation applications. The dataset is available to anyone interested in studying and evaluating signal processing and machine-learning algorithms for SSVEP-BCI systems.

2.
Front Neuroinform ; 16: 961089, 2022.
Article in English | MEDLINE | ID: mdl-36120085

ABSTRACT

Motor imagery (MI)-based brain-computer interface (BCI) systems have shown promising advances for lower limb motor rehabilitation. The purpose of this study was to develop an MI-based BCI for the actions of standing and sitting. Thirty-two healthy subjects participated in the study using 17 active EEG electrodes. We used a combination of the filter bank common spatial pattern (FBCSP) method and the regularized linear discriminant analysis (RLDA) technique for decoding EEG rhythms offline and online during motor imagery for standing and sitting. The offline analysis indicated the classification of motor imagery and idle state provided a mean accuracy of 88.51 ± 1.43% and 85.29 ± 1.83% for the sit-to-stand and stand-to-sit transitions, respectively. The mean accuracies of the sit-to-stand and stand-to-sit online experiments were 94.69 ± 1.29% and 96.56 ± 0.83%, respectively. From these results, we believe that the MI-based BCI may be useful to future brain-controlled standing systems.

3.
Sensors (Basel) ; 21(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34696014

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is one of the most aggressive neurodegenerative diseases and is now recognized as a multisystem network disorder with impaired connectivity. Further research for the understanding of the nature of its cognitive affections is necessary to monitor and detect the disease, so this work provides insight into the neural alterations occurring in ALS patients during a cognitive task (P300 oddball paradigm) by measuring connectivity and the power and latency of the frequency-specific EEG activity of 12 ALS patients and 16 healthy subjects recorded during the use of a P300-based BCI to command a robotic arm. For ALS patients, in comparison to Controls, the results (p < 0.05) were: an increment in latency of the peak ERP in the Delta range (OZ) and Alpha range (PO7), and a decreased power in the Beta band among most electrodes; connectivity alterations among all bands, especially in the Alpha band between PO7 and the channels above the motor cortex. The evolution observed over months of an advanced-state patient backs up these findings. These results were used to compute connectivity- and power-based features to discriminate between ALS and Control groups using Support Vector Machine (SVM). Cross-validation achieved a 100% in specificity and 75% in sensitivity, with an overall 89% success.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/diagnosis , Electroencephalography , Humans
4.
Front Neurosci ; 14: 589659, 2020.
Article in English | MEDLINE | ID: mdl-33328860

ABSTRACT

This work presents the design, implementation, and evaluation of a P300-based brain-machine interface (BMI) developed to control a robotic hand-orthosis. The purpose of this system is to assist patients with amyotrophic lateral sclerosis (ALS) who cannot open and close their hands by themselves. The user of this interface can select one of six targets, which represent the flexion-extension of one finger independently or the movement of the five fingers simultaneously. We tested offline and online our BMI on eighteen healthy subjects (HS) and eight ALS patients. In the offline test, we used the calibration data of each participant recorded in the experimental sessions to estimate the accuracy of the BMI to classify correctly single epochs as target or non-target trials. On average, the system accuracy was 78.7% for target epochs and 85.7% for non-target trials. Additionally, we observed significant P300 responses in the calibration recordings of all the participants, including the ALS patients. For the BMI online test, each subject performed from 6 to 36 attempts of target selections using the interface. In this case, around 46% of the participants obtained 100% of accuracy, and the average online accuracy was 89.83%. The maximum information transfer rate (ITR) observed in the experiments was 52.83 bit/min, whereas that the average ITR was 18.13 bit/min. The contributions of this work are the following. First, we report the development and evaluation of a mind-controlled robotic hand-orthosis for patients with ALS. To our knowledge, this BMI is one of the first P300-based assistive robotic devices with multiple targets evaluated on people with ALS. Second, we provide a database with calibration data and online EEG recordings obtained in the evaluation of our BMI. This data is useful to develop and compare other BMI systems and test the processing pipelines of similar applications.

5.
Sensors (Basel) ; 20(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339105

ABSTRACT

The P300 paradigm is one of the most promising techniques for its robustness and reliability in Brain-Computer Interface (BCI) applications, but it is not exempt from shortcomings. The present work studied single-trial classification effectiveness in distinguishing between target and non-target responses considering two conditions of visual stimulation and the variation of the number of symbols presented to the user in a single-option visual frame. In addition, we also investigated the relationship between the classification results of target and non-target events when training and testing the machine-learning model with datasets containing different stimulation conditions and different number of symbols. To this end, we designed a P300 experimental protocol considering, as conditions of stimulation: the color highlighting or the superimposing of a cartoon face and from four to nine options. These experiments were carried out with 19 healthy subjects in 3 sessions. The results showed that the Event-Related Potentials (ERP) responses and the classification accuracy are stronger with cartoon faces as stimulus type and similar irrespective of the amount of options. In addition, the classification performance is reduced when using datasets with different type of stimulus, but it is similar when using datasets with different the number of symbols. These results have a special connotation for the design of systems, in which it is intended to elicit higher levels of evoked potentials and, at the same time, optimize training time.


Subject(s)
Brain-Computer Interfaces , Event-Related Potentials, P300 , Photic Stimulation , Humans , Reproducibility of Results
6.
Appl Psychophysiol Biofeedback ; 42(4): 257-267, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28735381

ABSTRACT

The sensorimotor rhythm (SMR) is an electroencephalographic rhythm associated with motor and cognitive development observed in the central brain regions during wakefulness in the absence of movement, and it reacts contralaterally to generalized and hemibody movements. The purpose of this work was to characterize the SMR of 4-month-old infants, born either healthy at term or prematurely with periventricular leukomalacia (PVL). Two groups of infants were formed: healthy and premature with PVL. Their electroencephalograms (EEGs) were recorded in four conditions: rest, free movement, right-hand grasping and left-hand grasping, in order to explore general reactivity to free movement and contralateral reactivity in hand-grasping conditions. Associations between SMR, and cognitive and motor performance were analyzed. The healthy infants showed a SMR between 5.47 and 7.03 Hz, with clear contralateral reactivity to free movement and right-hand grasping. However, the premature infants with PVL did not show enough electroencephalographic characteristics to evidence the presence of SMR. Poor performance, characteristic of children with PVL, was related to low-frequency SMR, while good performance was associated with a higher frequency rhythm in the left hemisphere. The presence of SMR in the group of healthy infants could be considered a sign of health at this age. Thus, poor SMR evidence in the EEG of infants with PVL is probably a sign of brain immaturity or brain dysfunction. Our results provide data on infant SMR development that is needed to design neurofeedback protocols for infants with PVL.


Subject(s)
Brain Waves/physiology , Brain/physiology , Child Development/physiology , Infant, Premature/physiology , Leukomalacia, Periventricular/physiopathology , Brain/growth & development , Brain/physiopathology , Female , Humans , Infant , Male
7.
J Neurosci Methods ; 214(2): 233-45, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23416134

ABSTRACT

In this paper we propose an approach for the extraction of features that differentiate two populations or two experimental conditions in a neurophysiological experiment. These features consist of summarizing variables defined as total activity (e.g., total normalized log-power), computed over sets of sites in a discrete domain, such as the time-frequency-topography space. These sets are obtained as those that maximize the linear separation between the two populations, and the corresponding maps provide information that may complement that obtained by standard procedures, such as statistical parametric mapping. It is shown experimentally, using both simulated and real data, that the proposed approach may provide useful information even when the standard procedures fail, due to the conservative nature of the multiple comparison correction that must be applied in the later case.


Subject(s)
Models, Statistical , Statistics as Topic/methods , Acoustic Stimulation , Algorithms , Auditory Perception/physiology , Child , Computer Simulation , Evoked Potentials, Auditory/physiology , Female , Humans , Infant, Newborn , Infant, Premature , Learning Disabilities/physiopathology , Male , Nerve Fibers, Myelinated/physiology
8.
Neurosci Lett ; 510(2): 115-20, 2012 Feb 29.
Article in English | MEDLINE | ID: mdl-22266305

ABSTRACT

This study had two goals: (a) to describe the results of the Wechsler Adult Intelligence Scale-III (WAIS-III) and of the quantitative analyses of electroencephalograms (EEG) in elderly adults (60-84 y.o.) that are both healthy and active, and (b) to explore the relationship between the WAIS-III results and EEG in this group. A correlation analysis was made between WAIS-III scores and the Z-transformed absolute power (AP) and relative power (RP) values of delta, theta, alpha, and beta frequency bands. Lower values of delta and theta and higher values of alpha AP and RP were significantly related to better scores in the WAIS-III subtest scores. There were few significant relationships between WAIS-III scores and beta activity. These results suggest that the WAIS-III could be used as a brain function indicator in this age group, paying special attention to the subtests that correlated most significantly with EEG values.


Subject(s)
Aging/physiology , Brain Waves/physiology , Brain/physiology , Cognition , Electroencephalography , Wechsler Scales , Aged , Aged, 80 and over , Alpha Rhythm/physiology , Beta Rhythm/physiology , Delta Rhythm/physiology , Female , Humans , Male , Middle Aged , Theta Rhythm/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...