Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 28(23): 6992-7008, 2022 12.
Article in English | MEDLINE | ID: mdl-36053734

ABSTRACT

There is a need to revise the framework used to project species risks under climate change (CC) and land-use/cover change (LUCC) scenarios. We built a CC risk index using the latest Intergovernmental Panel on Climate Change framework, where risk is a function of vulnerability (sensitivity and adaptive capacity), exposure, and hazard. We incorporated future LUCC scenarios as part of the exposure component. We combined a trait-based approach based on biological characteristics of species with a correlative approach based on ecological niche modeling, assigning risk scores to species, taxonomic (orders), and functional (trophic, body size, and locomotion) groups of terrestrial mammals occurring in Mexico. We identified 15 species projected to lose their climatic suitability. Of the 11 taxonomic orders, Eulipotyphla, Didelphimorphia, Artiodactyla, and Lagomorpha had the highest risk scores. Of the 19 trophic groups, piscivores, insectivores under canopy, frugivores-granivores, herbivores browser, and myrmecophagous had the highest risk scores. Of the five body-sized groups, large-sized species (>15 kg) had highest risk scores. Of the seven locomotion groups, arboreal and semi-aquatics had highest risk scores. CC and LUCC scenarios reduced suitable areas of species potential distributions by 37.5% (with CC), and 51% (with CC and LUCC) under a limited full-dispersal assumption. Reductions in suitable areas of species potential distributions increased to 50.2% (with CC), and 52.4% (with CC and LUCC) under a non-dispersal assumption. Species-rich areas (>75% species) projected 36% (with CC) and 57% (with CC and LUCC) reductions in suitability for 2070. Shifts in climatic suitability projections of species-rich areas increased in number of species in northeast and southeast Mexico and decreased in northwest and southern Mexico, suggesting important species turnover. High-risk projections under future CC and LUCC scenarios for species, taxonomic, and functional group diversities, and species-rich areas of terrestrial mammals highlight trends in different impacts on biodiversity and ecosystem function.


Subject(s)
Climate Change , Ecosystem , Animals , Mexico , Biodiversity , Mammals
2.
Trop Med Infect Dis ; 7(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36136632

ABSTRACT

Chagas disease, caused by the protozoa Trypanosoma cruzi, is an important yet neglected disease that represents a severe public health problem in the Americas. Although the alteration of natural habitats and climate change can favor the establishment of new transmission cycles for T. cruzi, the compound effect of human-modified landscapes and current climate change on the transmission dynamics of T. cruzi has until now received little attention. A better understanding of the relationship between these factors and T. cruzi presence is an important step towards finding ways to mitigate the future impact of this disease on human communities. Here, we assess how wild and domestic cycles of T. cruzi transmission are related to human-modified landscapes and climate conditions (LUCC-CC). Using a Bayesian datamining framework, we measured the correlations among the presence of T. cruzi transmission cycles (sylvatic, rural, and urban) and historical land use, land cover, and climate for the period 1985 to 2012. We then estimated the potential range changes of T. cruzi transmission cycles under future land-use and -cover change and climate change scenarios for 2050 and 2070 time-horizons, with respect to "green" (RCP 2.6), "business-as-usual" (RCP 4.5), and "worst-case" (RCP 8.5) scenarios, and four general circulation models. Our results show how sylvatic and domestic transmission cycles could have historically interacted through the potential exchange of wild triatomines (insect vectors of T. cruzi) and mammals carrying T. cruzi, due to the proximity of human settlements (urban and rural) to natural habitats. However, T. cruzi transmission cycles in recent times (i.e., 2011) have undergone a domiciliation process where several triatomines have colonized and adapted to human dwellings and domestic species (e.g., dogs and cats) that can be the main blood sources for these triatomines. Accordingly, Chagas disease could become an emerging health problem in urban areas. Projecting potential future range shifts of T. cruzi transmission cycles under LUCC-CC scenarios we found for RCP 2.6 no expansion of favourable conditions for the presence of T. cruzi transmission cycles. However, for RCP 4.5 and 8.5, a significant range expansion of T. cruzi could be expected. We conclude that if sustainable goals are reached by appropriate changes in socio-economic and development policies we can expect no increase in suitable habitats for T. cruzi transmission cycles.

3.
J Environ Manage ; 300: 113748, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34543962

ABSTRACT

Land-use/cover change is the major cause of terrestrial ecosystem degradation. However, its impacts will be exacerbated due to climate change and population growth, driving agricultural expansion because of higher demand of food and lower agricultural yields in some tropical areas. International strategies aimed to mitigate impacts of climate change and land use-cover change are challenging in developing regions. This study aims to evaluate alternatives to minimize the impacts of these threats under socioeconomic trajectories, in one of the biologically richest regions in Guatemala and Mexico. This study is located at the Usumacinta watershed, a transboundary region that shares a common history, with similar biophysical properties and economic constraints which have led to large land use/cover changes. To understand the impacts on deforestation and carbon emissions of different land-management practices, we developed three scenarios (1): business as usual (BAU), (2) a reducing emissions scenario aimed to reduce deforestation and degradation (REDD+), and (3) zero-deforestation from 2030 onwards based on the international commitments. Our results suggest that by 2050, natural land cover might reduce 22.3 and 12.2% of its extent under the BAU and REDD + scenarios, respectively in comparison with 2012. However, the zero-deforestation scenario shows that by 2050, it would be possible to avoid losing 22.4% of the forested watershed (1.7 million ha) and recover 5.9% (0.4 million hectares) of it. In terms of carbon sequestration, REDD + projects can reduce the carbon losses in natural vegetation, but a zero-deforestation policy can double the carbon sequestration produced by REDD + projects only. This study shows that to reduce the pressures on ecosystems, particularly in regions highly marginalized with significant migration, it is necessary to implement transboundary land-management policies that also integrate poverty alleviation strategies.


Subject(s)
Climate Change , Ecosystem , Agriculture , Conservation of Natural Resources , Forests
4.
J Environ Manage ; 282: 111973, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33461090

ABSTRACT

Primary forests in seasonally dry tropical regions have undergone intense land-use/cover change, ranging from widespread shifting agriculture to land clearing for livestock production systems, and selective logging. Despite the importance of tropical dry forests (TDF), little is known about the implications of carbon (C) emissions from deforestation in local, national, and global scales. Therefore, the main objective of this study is to quantify and understand the processes that drive major C losses of this ecosystem in Mexico. Also, we evaluated the applicability of the already published above ground biomass (AGB) maps to quantify and allocate changes in C stocks. The results suggest that biomass maps can be used to capture the patterns of AGB distribution and to identify the driving forces of C emissions. The C losses are more related to socioeconomic drivers than biophysical characteristics like topography and climate. Besides, this study shows that published current AGB maps may be used for landscape management, including conservation and restoration areas.


Subject(s)
Carbon , Ecosystem , Biomass , Carbon/analysis , Conservation of Natural Resources , Forests , Mexico , Trees , Tropical Climate
5.
Ambio ; 48(4): 336-349, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30128861

ABSTRACT

This study identifies the hotspots of land use cover change (LUCC) under two socioeconomic and climate change scenarios [business as usual (BAU) and a pessimistic scenario] at the national level for Mexico for three-time periods. Modelling suggests that by 2050 grassland and tropical evergreen forest will be the most endangered ecosystems, having lost 20-33% (BAU) or 43-46% (pessimistic scenario) of their extent in comparison to 1993. Agricultural expansion would be the major driver of LUCC, increasing from 24.4% of the country in 1993 to 30% (BAU) or 34% (pessimistic) in 2050. The most influential variables were distance from roads and human settlements, slope, aridity, and evapotranspiration. The hotspots of LUCC were influenced by environmental constraints and socioeconomic activities more than by climate change. These findings could be used to build proposals to reduce deforestation, including multiple feedbacks among urbanization, industrialization and food consumption.


Subject(s)
Climate Change , Ecosystem , Conservation of Natural Resources , Humans , Mexico , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...