Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(5): e10132, 2023 May.
Article in English | MEDLINE | ID: mdl-37223312

ABSTRACT

Lotic systems in mountain regions have historically provided secure habitat for native fish populations because of their relative isolation from human settlement and lack of upstream disturbances. However, rivers of mountain ecoregions are currently experiencing heightened levels of disturbance due to the introduction of nonnative species impacting endemic fishes in these areas. We compared the fish assemblages and diets of mountain steppe fishes of the stocked rivers in Wyoming with rivers in northern Mongolia where stocking is absent. Using gut content analysis, we quantified the selectivity and diets of fishes collected in these systems. Nonnative species had more generalist diets with lower levels of selectivity than most native species and native species had high levels of dietary specificity and selectivity. High abundances of nonnative species and high levels of dietary overlaps in our Wyoming sites is a cause of concern for native Cutthroat Trout and overall system stability. In contrast, fish assemblages characterizing Mongolia mountain steppe rivers were composed of only native species with diverse diets and higher selectivity values, suggesting low probability for interspecific competition.

2.
Ecol Lett ; 25(12): 2624-2636, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223323

ABSTRACT

Quantifying the trophic basis of production for freshwater metazoa at broad spatial scales is key to understanding ecosystem function and has been a research priority for decades. However, previous lotic food web studies have been limited by geographic coverage or methodological constraints. We used compound-specific stable carbon isotope analysis of amino acids (AAs) to estimate basal resource contributions to fish consumers in streams spanning grassland, montane and semi-arid ecoregions of the temperate steppe biome on two continents. Across a range of stream sizes and light regimes, we found consistent trophic importance of aquatic resources. Essential AAs of heterotrophic microbial origin generally provided secondary support for fishes, while terrestrial carbon did not seem to provide significant, direct support. These findings provide strong evidence for the dominant contribution of carbon to higher-order consumers by aquatic autochthonous resources (primarily) and heterotrophic microbial communities (secondarily) in temperate steppe streams.


Subject(s)
Food Chain , Rivers , Animals , Rivers/chemistry , Ecosystem , Fishes , Carbon
3.
Ecol Evol ; 11(23): 16745-16762, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938470

ABSTRACT

Stream fishes are restricted to specific environments with appropriate habitats for feeding and reproduction. Interactions between streams and surrounding landscapes influence the availability and type of fish habitat, nutrient concentrations, suspended solids, and substrate composition. Valley width and gradient are geomorphological variables that influence the frequency and intensity that a stream interacts with the surrounding landscape. For example, in constrained valleys, canyon walls are steeply sloped and valleys are narrow, limiting the movement of water into riparian zones. Wide valleys have long, flat floodplains that are inundated with high discharge. We tested for differences in fish assemblages with geomorphology variation among stream sites. We selected rivers in similar forested and endorheic ecoregion types of the United States and Mongolia. Sites where we collected were defined as geomorphologically unique river segments (i.e., functional process zones; FPZs) using an automated ArcGIS-based tool. This tool extracts geomorphic variables at the valley and catchment scales and uses them to cluster stream segments based on their similarity. We collected a representative fish sample from replicates of FPZs. Then, we used constrained ordinations to determine whether river geomorphology could predict fish assemblage variation. Our constrained ordination approach using geomorphology to predict fish assemblages resulted in significance using fish taxonomy and traits in several watersheds. The watersheds where constrained ordinations were not successful were next analyzed with unconstrained ordinations to examine patterns among fish taxonomy and traits with geomorphology variables. Common geomorphology variables as predictors for taxonomic fish assemblages were river gradient, valley width, and valley slope. Significant geomorphology predictors of functional traits were valley width-to-floor width ratio, elevation, gradient, and channel sinuosity. These results provide evidence that fish assemblages respond similarly and strongly to geomorphic variables on two continents.

4.
Ecol Evol ; 11(11): 6527-6535, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34141237

ABSTRACT

River hydrogeomorphology is a major driver shaping biodiversity and community composition. Here, we examine how hydrogeomorphic heterogeneity expressed by Functional Process Zones (FPZs) in river networks is associated with fish assemblage variation. We examined this association in two distinct ecoregions in Mongolia expected to display different gradients of river network hydrogeomorphic heterogeneity. We delineated FPZs by extracting valley-scale hydrogeomorphic variables at 10 km sample intervals in forest steppe (FS) and in grassland (G) river networks. We sampled fish assemblages and examined variation associated with changes in gradients of hydrogeomorphology as expressed by the FPZs. Thus, we examined assemblage variation as patterns of occurrence- and abundance-based beta diversities for the taxonomic composition of assemblages and as functional beta diversity. Overall, we delineated 5 and 6 FPZs in river networks of the FS and G, respectively. Eight fish species were found in the FS river network and seventeen in the G, four of them common to both ecoregions. Functional richness was correspondingly higher in the G river network. Variation in the taxonomic composition of assemblages was driven by species turnover and was only significant in the G river network. Abundance-based taxonomic variation was significant in river networks of both ecoregions, while the functional beta diversity results were inconclusive. We show that valley-scale hydrogeomorphology is a significant driver of variation in fish assemblages at a macrosystem scale. Both changes in the composition of fish assemblages and the carrying capacity of the river network were driven by valley-scale hydrogeomorphic variables. River network hydrogeomorphology as accounted for in the study has, therefore, the potential to inform macrosystem scale community ecology research and conservation efforts.

5.
Infect Genet Evol ; 92: 104911, 2021 08.
Article in English | MEDLINE | ID: mdl-33991672

ABSTRACT

Metacercariae of trematodes from the genus Diplostomum are major helminth pathogens of freshwater fish, infecting the eye or the brain. The taxonomy of the genus Diplostomum is complicated, and has recently been based mainly on the molecular markers. In this study, we report the results of the morphological and molecular genetic analysis of diplostomid metacercaria from the brain of the minnow Phoxinus phoxinus from three populations in Fennoscandia (Northern Europe) and one population in Mongolia (East Asia). We obtained the data on the polymorphism of the partial mitochondrial cox1 gene and ribosomal ITS1-5.8S-ITS2 region of these parasites. РСА-based morphological analysis revealed that the parasites in the Asian and the European groups of Diplostomum sp. were distinctly different. Metacercariae from the brain of Mongolian minnows were much larger than those from the brain of Fennoscandian minnows but had much fewer excretory granules. Considering that the two study regions were separated by a distance of about 4500 km, we also tested the genetic homogeneity of their host, the minnow, using the mitochondrial cytb gene. It was shown that Diplostomum-infected minnows from Mongolia and Fennoscandia represented two previously unknown separate phylogenetic lineages of the genus Phoxinus. Both molecular and morphological analysis demonstrated that the parasites from Fennoscandia belonged the species Diplostomum phoxini, while the parasites from Mongolia belonged to a separate species, Diplostomum sp. MТ.Each of the two studied Diplostomum spp. was associated with a specific, and previously unknown, genealogical lineage of its second intermediate host, P. phoxinus.


Subject(s)
Brain/parasitology , Fish Diseases/pathology , Metacercariae/physiology , Trematoda/physiology , Trematode Infections/veterinary , Animals , Brain/anatomy & histology , Cyprinidae , Europe , Asia, Eastern , Fish Diseases/parasitology , Trematode Infections/parasitology , Trematode Infections/pathology
7.
PLoS One ; 10(12): e0143960, 2015.
Article in English | MEDLINE | ID: mdl-26625154

ABSTRACT

Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake's fish populations, especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3-4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (Lota lota) showed a significant decrease in population abundance from 2009-2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11-15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas.


Subject(s)
Conservation of Natural Resources/methods , Fisheries/methods , Fishes/physiology , Animals , Ecosystem , Endangered Species , Mongolia , Population Density , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...