Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Vaccine ; 41(42): 6146-6149, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37690874

ABSTRACT

In a phase 2 safety and immunogenicity study of a chikungunya virus virus-like particle (CHIKV VLP) vaccine in an endemic region, of 400 total participants, 78 were found to be focus reduction neutralizing antibody seropositive at vaccination despite being ELISA seronegative at screening, of which 39 received vaccine. This post hoc analysis compared safety and immunogenicity of CHIKV VLP vaccine in seropositive (n = 39) versus seronegative (n = 155) vaccine recipients for 72 weeks post-vaccination. There were no differences in solicited adverse events, except injection site swelling in 10.3% of seropositive versus 0.6% of seronegative recipients (p = 0.006). Baseline seropositive vaccine recipients had stronger post-vaccination luciferase neutralizing antibody responses versus seronegative recipients (peak geometric mean titer of 3594 and 1728, respectively) persisting for 72 weeks, with geometric mean fold increases of 3.1 and 13.2, respectively. In this small study, CHIKV VLP vaccine was well-tolerated and immunogenic in individuals with pre-existing immunity. ClinicalTrials.gov Identifier: NCT02562482.


Subject(s)
Chikungunya Fever , Chikungunya virus , Vaccines, Virus-Like Particle , Viral Vaccines , Humans , Chikungunya Fever/prevention & control , Antibodies, Viral , Antibodies, Neutralizing , Immunogenicity, Vaccine , Double-Blind Method
2.
Vaccines (Basel) ; 11(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37376480

ABSTRACT

PXVX0047 is an investigational vaccine developed for active immunization to prevent febrile acute respiratory disease (ARD) caused by adenovirus serotypes 4 (Ad4) and 7 (Ad7). PXVX0047 consists of a modernized, plasmid-derived vaccine that was generated using a virus isolated from Wyeth Ad4 and Ad7 vaccine tablets. A phase 1 two-arm, randomized, double-blind, active-controlled study was conducted to evaluate the safety profile and immunogenicity of the investigational adenovirus vaccines. The two components of PXVX0047 were administered orally together in a single dose to 11 subjects. For comparison, three additional subjects received the Ad4/Ad7 vaccine that is currently in use by the US military. The results of this study show that the tolerability and immunogenicity of the PXVX0047 Ad7 component are comparable with that of the control Ad4/Ad7 vaccine; however, the immunogenicity of the PXVX0047 Ad4 component was lower than expected. Clinical trial number NCT03160339.

3.
PLoS Negl Trop Dis ; 16(7): e0010588, 2022 07.
Article in English | MEDLINE | ID: mdl-35793354

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus with maternal infection associated with preterm birth, congenital malformations, and fetal death, and adult infection associated with Guillain-Barré syndrome. Recent widespread endemic transmission of ZIKV and the potential for future outbreaks necessitate the development of an effective vaccine. We developed a ZIKV vaccine candidate based on virus-like-particles (VLPs) generated following transfection of mammalian HEK293T cells using a plasmid encoding the pre-membrane/membrane (prM/M) and envelope (E) structural protein genes. VLPs were collected from cell culture supernatant and purified by column chromatography with yields of approximately 1-2mg/L. To promote increased particle yields, a single amino acid change of phenylalanine to alanine was made in the E fusion loop at position 108 (F108A) of the lead VLP vaccine candidate. This mutation resulted in a modest 2-fold increase in F108A VLP production with no detectable prM processing by furin to a mature particle, in contrast to the lead candidate (parent). To evaluate immunogenicity and efficacy, AG129 mice were immunized with a dose titration of either the immature F108A or lead VLP (each alum adjuvanted). The resulting VLP-specific binding antibody (Ab) levels were comparable. However, geometric mean neutralizing Ab (nAb) titers using a recombinant ZIKV reporter were significantly lower with F108A immunization compared to lead. After virus challenge, all lead VLP-immunized groups showed a significant 3- to 4-Log10 reduction in mean ZIKV RNAemia levels compared with control mice immunized only with alum, but the RNAemia reduction of 0.5 Log10 for F108A groups was statistically similar to the control. Successful viral control by the lead VLP candidate following challenge supports further vaccine development for this candidate. Notably, nAb titer levels in the lead, but not F108A, VLP-immunized mice inversely correlated with RNAemia. Further evaluation of sera by an in vitro Ab-dependent enhancement assay demonstrated that the F108A VLP-induced immune sera had a significantly higher capacity to promote ZIKV infection in FcγR-expressing cells. These data indicate that a single amino acid change in the fusion loop resulted in increased VLP yields but that the immature F108A particles were significantly diminished in their capacity to induce nAbs and provide protection against ZIKV challenge.


Subject(s)
Premature Birth , Vaccines, Virus-Like Particle , Viral Vaccines , Zika Virus Infection , Zika Virus , Amino Acids , Animals , Antibodies, Neutralizing , Antibodies, Viral , Female , HEK293 Cells , Humans , Infant, Newborn , Mammals , Mice , Mutation , Zika Virus/genetics
4.
Lancet Infect Dis ; 22(9): 1343-1355, 2022 09.
Article in English | MEDLINE | ID: mdl-35709798

ABSTRACT

BACKGROUND: Chikungunya virus (CHIKV) disease is an ongoing public health threat. We aimed to evaluate the safety and immunogenicity of PXVX0317, an aluminium hydroxide-adjuvanted formulation of a CHIKV virus-like particle (VLP) vaccine. METHODS: This randomised, double-blind, parallel-group, phase 2 trial was conducted at three clinical trial centres in the USA. Eligible participants were healthy CHIKV-naïve adults aged 18-45 years. Participants were stratified by site and randomly assigned (1:1:1:1:1:1:1:1) to one of the eight vaccination groups using a block size of 16. Group 1 received two doses of unadjuvanted PXVX0317 28 days apart (2 × 20 µg; standard); all other groups received adjuvanted PXVX0317: groups 2-4 received two doses 28 days apart (2 × 6 µg [group 2], 2 × 10 µg [group 3], or 2 × 20 µg [group 4]; standard); group 4 also received a booster dose 18 months after the first active injection (40 µg; standard plus booster); groups 5-7 received two doses 14 days apart (2 × 6 µg [group 5], 2 × 10 µg [group 6], or 2 × 20 µg [group 7]; accelerated); and group 8 received one dose (1 × 40 µg; single). The primary endpoint was the geometric mean titre of anti-CHIKV neutralising antibody on day 57 (28 days after the last vaccination), assessed in the immunogenicity-evaluable population. Additionally, we assessed safety. This trial is registered at ClinicalTrials.gov, NCT03483961. FINDINGS: This trial was conducted from April 18, 2018, to Sept 21, 2020; 468 participants were assessed for eligibility. Of these, 415 participants were randomly assigned to eight groups (n=53 in groups 1, 5, and 6; n=52 in groups 2 and 8; n=51 in groups 3 and 7; and n=50 in group 4) and 373 were evaluable for immunogenicity. On day 57, serum neutralising antibody geometric mean titres were 2057·0 (95% CI 1584·8-2670·0) in group 1, 1116·2 (852·5-1461·4; p=0·0015 vs group 1 used as a reference) in group 2, 1465·3 (1119·1-1918·4; p=0·076) in group 3, 2023·8 (1550·5-2641·7; p=0·93) in group 4, 920·1 (710·9-1190·9; p<0·0001) in group 5, 1206·9 (932·4-1562·2; p=0·0045) in group 6, 1562·8 (1204·1-2028·3; p=0·14) in group 7, and 1712·5 (1330·0-2205·0; p=0·32) in group 8. In group 4, a booster dose increased serum neutralising antibody geometric mean titres from 215·7 (95% CI 160·9-289·1) on day 547 to 10 941·1 (7378·0-16 225·1) on day 575. Durability of the immune response (evaluated in groups 1, 4, and 8) was shown up to 2 years. The most common solicited adverse event was pain at the injection site, reported in 12 (23%) of 53 participants who received the unadjuvanted vaccine (group 1) and 111 (31%) of 356 who received the adjuvanted vaccine. No vaccine-related serious adverse events were reported. INTERPRETATION: PXVX0317 was well tolerated and induced a robust and durable serum neutralising antibody immune response against CHIKV up to 2 years. A single 40 µg injection of adjuvanted PXVX0317 is being further investigated in phase 3 clinical trials (NCT05072080 and NCT05349617). FUNDING: Emergent BioSolutions.


Subject(s)
Chikungunya Fever , Vaccines, Virus-Like Particle , Adjuvants, Immunologic , Adult , Aluminum Hydroxide , Antibodies, Neutralizing , Antibodies, Viral , Double-Blind Method , Humans , Immunogenicity, Vaccine
5.
PLoS Negl Trop Dis ; 15(3): e0009195, 2021 03.
Article in English | MEDLINE | ID: mdl-33711018

ABSTRACT

BACKGROUND: Zika virus (ZIKV), a mosquito-borne flavivirus, is a re-emerging virus that constitutes a public health threat due to its recent global spread, recurrent outbreaks, and infections that are associated with neurological abnormalities in developing fetuses and Guillain-Barré syndrome in adults. To date, there are no approved vaccines against ZIKV infection. Various preclinical and clinical development programs are currently ongoing in an effort to bring forward a vaccine for ZIKV. METHODOLOGY/PRINCIPLE FINDINGS: We have developed a ZIKV vaccine candidate based on Virus-Like-Particles (VLPs) produced in HEK293 mammalian cells using the prM (a precursor to M protein) and envelope (E) structural protein genes from ZIKV. Transient transfection of cells via plasmid and electroporation produced VLPs which were subsequently purified by column chromatography yielding approximately 2mg/L. Initially, immunogenicity and efficacy were evaluated in AG129 mice using a dose titration of VLP with and without Alhydrogel 2% (alum) adjuvant. We found that VLP with and without alum elicited ZIKV-specific serum neutralizing antibodies (nAbs) and that titers correlated with protection. A follow-up immunogenicity and efficacy study in rhesus macaques was performed using VLP formulated with alum. Multiple neutralization assay methods were performed on immune sera including a plaque reduction neutralization test, a microneutralization assay, and a Zika virus Renilla luciferase neutralization assay. All of these assays indicate that following immunization, VLP induces high titer nAbs which correlate with protection against ZIKV challenge. CONCLUSIONS/SIGNIFICANCE: These studies confirm that ZIKV VLPs could be efficiently generated and purified. Upon VLP immunization, in both mice and NHPs, nAb was induced that correlate with protection against ZIKV challenge. These studies support translational efforts in developing a ZIKV VLP vaccine for evaluation in human clinical trials.


Subject(s)
Vaccines, Virus-Like Particle/immunology , Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Zika Virus/immunology , Adjuvants, Immunologic/pharmacology , Alum Compounds/pharmacology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Female , HEK293 Cells , Humans , Macaca mulatta , Male , Mice , Neutralization Tests , Vaccines, Virus-Like Particle/administration & dosage , Viral Vaccines/administration & dosage , Zika Virus Infection/immunology
6.
JAMA ; 323(14): 1369-1377, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286643

ABSTRACT

Importance: Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus prevalent worldwide. There are currently no licensed vaccines or therapies. Objective: To evaluate the safety and tolerability of an investigational CHIKV virus-like particle (VLP) vaccine in endemic regions. Design, Setting, and Participants: This was a randomized, placebo-controlled, double-blind, phase 2 clinical trial to assess the vaccine VRC-CHKVLP059-00-VP (CHIKV VLP). The trial was conducted at 6 outpatient clinical research sites located in Haiti, Dominican Republic, Martinique, Guadeloupe, and Puerto Rico. A total of 400 healthy adults aged 18 through 60 years were enrolled after meeting eligibility criteria. The first study enrollment occurred on November 18, 2015; the final study visit, March 6, 2018. Interventions: Participants were randomized 1:1 to receive 2 intramuscular injections 28 days apart (20 µg, n = 201) or placebo (n = 199) and were followed up for 72 weeks. Main Outcomes and Measures: The primary outcome was the safety (laboratory parameters, adverse events, and CHIKV infection) and tolerability (local and systemic reactogenicity) of the vaccine, and the secondary outcome was immune response by neutralization assay 4 weeks after second vaccination. Results: Of the 400 randomized participants (mean age, 35 years; 199 [50%] women), 393 (98%) completed the primary safety analysis. All injections were well tolerated. Of the 16 serious adverse events unrelated to the study drugs, 4 (25%) occurred among 4 patients in the vaccine group and 12 (75%) occurred among 11 patients in the placebo group. Of the 16 mild to moderate unsolicited adverse events that were potentially related to the drug, 12 (75%) occurred among 8 patients in the vaccine group and 4 (25%) occurred among 3 patients in the placebo group. All potentially related adverse events resolved without clinical sequelae. At baseline, there was no significant difference between the effective concentration (EC50)-which is the dilution of sera that inhibits 50% infection in viral neutralization assay-geometric mean titers (GMTs) of neutralizing antibodies of the vaccine group (46; 95% CI, 34-63) and the placebo group (43; 95% CI, 32-57). Eight weeks following the first administration, the EC50 GMT in the vaccine group was 2005 (95% CI, 1680-2392) vs 43 (95% CI, 32-58; P < .001) in the placebo group. Durability of the immune response was demonstrated through 72 weeks after vaccination. Conclusions and Relevance: Among healthy adults in a chikungunya endemic population, a virus-like particle vaccine compared with placebo demonstrated safety and tolerability. Phase 3 trials are needed to assess clinical efficacy. Trial Registration: ClinicalTrials.gov Identifier: NCT02562482.


Subject(s)
Chikungunya Fever/prevention & control , Chikungunya virus/immunology , Vaccines, Virus-Like Particle/adverse effects , Viral Vaccines/adverse effects , Adolescent , Adult , Antibodies, Neutralizing/blood , Chikungunya Fever/immunology , Double-Blind Method , Female , Humans , Injections, Intramuscular , Male , Middle Aged , Neutralization Tests , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Young Adult
7.
Front Immunol ; 11: 626464, 2020.
Article in English | MEDLINE | ID: mdl-33658998

ABSTRACT

Designing immunogens and improving delivery methods eliciting protective immunity is a paramount goal of HIV vaccine development. A comparative vaccine challenge study was performed in rhesus macaques using clade C HIV Envelope (Env) and SIV Gag antigens. One group was vaccinated using co-immunization with DNA Gag and Env expression plasmids cloned from a single timepoint and trimeric Env gp140 glycoprotein from one of these clones (DNA+Protein). The other group was a prime-boost regimen composed of two replicating simian (SAd7) adenovirus-vectored vaccines expressing Gag and one Env clone from the same timepoint as the DNA+Protein group paired with the same Env gp140 trimer (SAd7+Protein). The env genes were isolated from a single pre-peak neutralization timepoint approximately 1 year post infection in CAP257, an individual with a high degree of neutralization breadth. Both DNA+Protein and SAd7+Protein vaccine strategies elicited significant Env-specific T cell responses, lesser Gag-specific responses, and moderate frequencies of Env-specific TFH cells. Both vaccine modalities readily elicited systemic and mucosal Env-specific IgG but not IgA. There was a higher frequency and magnitude of ADCC activity in the SAd7+Protein than the DNA+Protein arm. All macaques developed moderate Tier 1 heterologous neutralizing antibodies, while neutralization of Tier 1B or Tier 2 viruses was sporadic and found primarily in macaques in the SAd7+Protein group. Neither vaccine approach provided significant protection from viral acquisition against repeated titered mucosal challenges with a heterologous Tier 2 clade C SHIV. However, lymphoid and gut tissues collected at necropsy showed that animals in both vaccine groups each had significantly lower copies of viral DNA in individual tissues compared to levels in controls. In the SAd7+Protein-vaccinated macaques, total and peak PBMC viral DNA were significantly lower compared with controls. Taken together, this heterologous Tier 2 SHIV challenge study shows that combination vaccination with SAd7+Protein was superior to combination DNA+Protein in reducing viral seeding in tissues in the absence of protection from infection, thus emphasizing the priming role of replication-competent SAd7 vector. Despite the absence of correlates of protection, because antibody responses were significantly higher in this vaccine group, we hypothesize that vaccine-elicited antibodies contribute to limiting tissue viral seeding.


Subject(s)
AIDS Vaccines/pharmacology , Adenoviridae , DNA, Viral , HIV Antibodies , HIV Infections , Immunization, Secondary , Immunoglobulin A , Immunoglobulin G , AIDS Vaccines/immunology , Animals , DNA, Viral/blood , DNA, Viral/immunology , HIV Antibodies/blood , HIV Antibodies/immunology , HIV Infections/blood , HIV Infections/immunology , HIV Infections/prevention & control , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Macaca mulatta , Male
8.
EBioMedicine ; 27: 61-70, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29269041

ABSTRACT

Zika virus (ZIKV) poses a serious public health threat due to its association with birth defects in developing fetuses and Guillain-Barré Syndrome in adults. We are developing a ZIKV vaccine based on virus-like particles (VLPs) generated in transiently transfected HEK293 cells. The genetic construct consists of the prM and envelope structural protein genes of ZIKV placed downstream from a heterologous signal sequence. To better understand the humoral responses and correlates of protection (CoP) induced by the VLP vaccine, we evaluated VLP immunogenicity with and without alum in immune-competent mice (C57Bl/6 x Balb/c) and observed efficient induction of neutralizing antibody as well as a dose-sparing effect of alum. To assess the efficacy of the immune sera, we performed passive transfer experiments in AG129 mice. Mice that received the immune sera prior to ZIKV infection demonstrated significantly reduced viral replication as measured by viral RNA levels in the blood and remained healthy, whereas control mice succumbed to infection. The results underscore the protective effect of the antibody responses elicited by this ZIKV VLP vaccine candidate. These studies will help define optimal vaccine formulations, contribute to translational efforts in developing a vaccine for clinical development, and assist in the definition of immunologic CoP.


Subject(s)
Immune Sera/immunology , Immunization, Passive , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/immunology , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Body Weight , Humans , Mice , RNA, Viral/blood , Species Specificity , Survival Analysis , Zika Virus Infection/virology
9.
J Virol ; 92(2)2018 01 15.
Article in English | MEDLINE | ID: mdl-29093095

ABSTRACT

HIV vaccine development is focused on designing immunogens and delivery methods that elicit protective immunity. We evaluated a combination of adenovirus (Ad) vectors expressing HIV 1086.C (clade C) envelope glycoprotein (Env), SIV Gag p55, and human pegivirus GBV-C E2 glycoprotein. We compared replicating simian (SAd7) with nonreplicating human (Ad4) adenovirus-vectored vaccines paired with recombinant proteins in a novel prime-boost regimen in rhesus macaques, with the goal of eliciting protective immunity against SHIV challenge. In both vaccine groups, plasma and buccal Env-specific IgG, tier 1 heterologous neutralizing antibodies, and antibody-dependent cell-mediated viral inhibition were readily generated. High Env-specific T cell responses elicited in all vaccinees were significantly greater than responses targeting Gag. After three intrarectal exposures to heterologous tier 1 clade C SHIV, all 10 sham-vaccinated controls were infected, whereas 4/10 SAd7- and 3/10 Ad4-vaccinated macaques remained uninfected or maintained tightly controlled plasma viremia. Time to infection was significantly delayed in SAd7-vaccinated macaques compared to the controls. Cell-associated and plasma virus levels were significantly lower in each group of vaccinated macaques compared to controls; the lowest plasma viral burden was found in animals vaccinated with the SAd7 vectors, suggesting superior immunity conferred by the replicating simian vectors. Furthermore, higher V1V2-specific binding antibody titers correlated with viral control in the SAd7 vaccine group. Thus, recombinant Ad plus protein vaccines generated humoral and cellular immunity that was effective in either protecting from SHIV acquisition or significantly reducing viremia in animals that became infected, consequently supporting additional development of replicating Ad vectors as HIV vaccines.IMPORTANCE There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV infection and limits in vivo viral replication and associated pathogenesis. Although replicating virus vectors have been advanced as HIV vaccine platforms, there have not been any direct comparisons of the replicating to the nonreplicating format. The present study directly compared the replicating SAd7 to nonreplicating Ad4 vectors in macaques and demonstrated that in the SAd7 vaccine group, the time to infection was significantly delayed compared to the control group, and V1V2 Env-specific binding antibodies correlated with viral outcomes. Viral control was significantly enhanced in vaccinated macaques compared to controls, and in infected SAd7-vaccinated macaques compared to Ad4-vaccinated macaques, suggesting that this vector may have conferred more effective immunity. Because blocking infection is so difficult with current vaccines, development of a vaccine that can limit viremia if infection occurs would be valuable. These data support further development of replicating adenovirus vectors.


Subject(s)
Adenoviridae , Genetic Vectors , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Vaccines, Synthetic , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Specificity/immunology , CD4 Lymphocyte Count , Cell Line , Genetic Vectors/genetics , Genetic Vectors/immunology , Genotype , HIV/immunology , Humans , Immunity, Humoral , Immunization/methods , Kaplan-Meier Estimate , Macaca mulatta , Male , Protein Binding/immunology , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Viral Envelope Proteins/immunology , Viral Load
10.
PLoS One ; 8(12): e82380, 2013.
Article in English | MEDLINE | ID: mdl-24312658

ABSTRACT

BACKGROUND: There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated. METHODS: The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets. RESULTS: Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization. CONCLUSIONS: The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical trials.


Subject(s)
AIDS Vaccines/immunology , Adenoviridae/genetics , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , Animals , Cell Line , Female , Humans , Male , Mice , Mutagenesis, Site-Directed , Rabbits
11.
PLoS One ; 7(2): e31177, 2012.
Article in English | MEDLINE | ID: mdl-22363572

ABSTRACT

BACKGROUND: Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus. CONCLUSIONS/SIGNIFICANCE: Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.


Subject(s)
Adenoviridae/classification , Adenoviridae/physiology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Recombination, Genetic/genetics , Virus Replication/physiology , Adenoviridae/growth & development , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Genetic Vectors/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunization , Lung/pathology , Lung/virology , Mice , Molecular Sequence Data , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Reassortant Viruses , Serotyping , Species Specificity , Survival Analysis , Viral Load/immunology
12.
Cell Immunol ; 224(1): 8-16, 2003 Jul.
Article in English | MEDLINE | ID: mdl-14572796

ABSTRACT

Mammalian Peyer's Patches possess specialized epithelium, the follicle associated epithelium (FAE), and specialized cells called M cells which mediate transcytosis of antigens to underlying lymphoid tissue. To identify FAE specific genes, we used TOGA gene expression profiling of microdissected mouse Peyer's Patch tissue. We found expression of laminin beta3 across the FAE, and scattered expression of peptidoglycan recognition protein (PGRP)-S. Using the M cell specific lectin Ulex europaeus agglutinin 1 (UEA-1), PGRP-S expression was nearly exclusively co-localized with UEA-1+ M cells. By contrast, the related gene PGRP-L was expressed among a subset of UEA-1 negative FAE cells. Expression of these proteins in transfected cells demonstrated distinct subcellular localization. PGRP-S showed a vesicular pattern and extracellular secretion, while PGRP-L showed localization to both the cytoplasm and the cell surface. The potential function of these PGRP proteins as pattern recognition receptors and their distinctive cellular distribution suggests a complex coordination among specialized cells of the FAE in triggering mucosal immunity and innate immune responses.


Subject(s)
Antigen-Presenting Cells/immunology , Carrier Proteins/biosynthesis , Epithelial Cells/immunology , Peyer's Patches/immunology , Animals , Antigen-Presenting Cells/cytology , Antigen-Presenting Cells/metabolism , Carrier Proteins/genetics , Cell Compartmentation/immunology , DNA, Complementary/analysis , DNA, Complementary/genetics , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression/immunology , Gene Expression Profiling , Immunity, Innate/genetics , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Laminin/genetics , Mice , Mice, Inbred BALB C , Peyer's Patches/cytology , Peyer's Patches/metabolism , Plant Lectins/chemistry , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...