Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Math Biol ; 61(4): 527-44, 2010 Oct.
Article in English | MEDLINE | ID: mdl-19941137

ABSTRACT

In stochastic modelling of infectious spread, it is often assumed that infection confers permanent immunity, a susceptible-infective-removed (SIR) model. We show how results concerning long-term (endemic) behaviour may be extended to a susceptible-infective-removed-susceptible (SIRS) model, in which immunity is temporary. Since the full SIRS model with demography is rather intractable, we also consider two simpler models: the susceptible-infective-susceptible (SIS) model with demography, in which there is no immunity; and the SIRS model in a closed population. For each model, we first analyse a deterministic model, then approximate the quasi-stationary distribution (equilibrium distribution conditional upon non-extinction of infection) using a moment closure technique. We look in particular at the effect of the immune period upon infection prevalence and upon time to fade-out of infection. Our main findings are that a shorter average immune period leads to higher infection prevalence in quasi-stationarity, and to longer persistence of infection in the population.


Subject(s)
Communicable Diseases/immunology , Disease Outbreaks , Models, Immunological , Nonlinear Dynamics , Communicable Diseases/epidemiology , Computer Simulation , Humans , Markov Chains , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...