Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36993278

ABSTRACT

Material- and cell-based technologies such as engineered tissues hold great promise as human therapies. Yet, the development of many of these technologies becomes stalled at the stage of pre-clinical animal studies due to the tedious and low-throughput nature of in vivo implantation experiments. We introduce a 'plug and play' in vivo screening array platform called Highly Parallel Tissue Grafting (HPTG). HPTG enables parallelized in vivo screening of 43 three-dimensional microtissues within a single 3D printed device. Using HPTG, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular self-assembly, integration and tissue function. Our studies highlight the importance of combinatorial studies that vary cellular and material formulation variables concomitantly, by revealing that inclusion of stromal cells can "rescue" vascular self-assembly in manner that is material-dependent. HPTG provides a route for accelerating pre-clinical progress for diverse medical applications including tissue therapy, cancer biomedicine, and regenerative medicine.

2.
Adv Biol (Weinh) ; 7(5): e2200208, 2023 05.
Article in English | MEDLINE | ID: mdl-36328790

ABSTRACT

Liver disease affects millions globally, and end-stage liver failure is only cured by organ transplant. Unfortunately, there is a growing shortage of donor organs as well as inequitable access to transplants across populations. Engineered liver tissue grafts that supplement or replace native organ function can address this challenge. While engineered liver tissues have been successfully engrafted previously, the extent to which these tissues express human liver metabolic genes and proteins remains unknown. Here, it is built engineered human liver tissues and characterized their engraftment, expansion, and metabolic phenotype at sequential stages post-implantation by RNA sequencing, histology, and host serology. Expression of metabolic genes is observed at weeks 1-2, followed by the cellular organization into hepatic cords by weeks 4-9.5. Furthermore, grafted engineered tissues exhibited progressive spatially restricted expression of critical functional proteins known to be zonated in the native human liver. This is the first report of engineered human liver tissue zonation after implantation in vivo, which can have important translational implications for this field.


Subject(s)
End Stage Liver Disease , Liver Transplantation , Organ Transplantation , Humans , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...