Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Yeast ; 30(8): 295-305, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23658026

ABSTRACT

Dekkera bruxellensis is a multifaceted yeast present in the fermentative processes used for alcoholic beverage and fuel alcohol production - in the latter, normally regarded as a contaminant. We evaluated the fermentation and growth performance of a strain isolated from water in an alcohol-producing unit, in batch systems with/without cell recycling in pure and co-cultures with Saccharomyces cerevisiae. The ethanol resistance and aeration dependence for ethanol/acid production were verified. Ethanol had an effect on the growth of D. bruxellensis in that it lowered or inhibited growth depending on the concentration. Acid production was verified in agitated cultures either with glucose or sucrose, but more ethanol was produced with glucose in agitated cultures. Regardless of the batch system, low sugar consumption and alcohol production and expressive growth were found with D. bruxellensis. Despite a similar ethanol yield compared to S. cerevisiae in the batch system without cell recycling, ethanol productivity was approximately four times lower. However, with cell recycling, ethanol yield was almost half that of S. cerevisiae. At initial low cell counts of D. bruxellensis (10 and 1000 cells/ml) in co-cultures with S. cerevisiae, a decrease in fermentative efficiency and a substantial growth throughout the fermentative cycles were displayed by D. bruxellensis. Due to the peculiarity of cell repitching in Brazilian fermentation processes, D. bruxellensis is able to establish itself in the process, even when present in low numbers initially, substantially impairing bioethanol production due to the low ethanol productivity, in spite of comparable ethanol yields.


Subject(s)
Dekkera/growth & development , Dekkera/metabolism , Saccharomyces cerevisiae/metabolism , Batch Cell Culture Techniques , Coculture Techniques , Dekkera/cytology , Ethanol/metabolism , Fermentation , Glucose/metabolism , Industrial Microbiology , Saccharomyces cerevisiae/growth & development , Sucrose/metabolism
2.
Braz. arch. biol. technol ; 53(5): 1043-1050, Sept.-Oct. 2010. ilus, tab
Article in English | LILACS | ID: lil-564080

ABSTRACT

The aim of this work was to study the in vitro antibacterial activity possessed by killer yeast strains against bacteria contaminating alcoholic fermentation (Bacillus subtilis, Lactobacillus plantarum, Lactobacillus fermentum and Leuconostoc mesenteroides), in cell X cell and cell X crude toxin preparations. The bacteria were not inhibited by any S. cerevisiae killer strains (5 out of 11). The inhibition caused by two crude toxin preparations (Trichosporon figueirae and Candida sp) against L. plantarum was surprisingly high but not in the same extent for B. subtilis, especially with three killer strains (Candida glabrata, Pichia anomala and Candida sp). L. mesenteroides and L. fermentum strains were neither inhibited in cell X cell nor crude toxin X cell tests. The results suggested that killer activity of yeasts might operate over bacteria and it could be used for the biocontrol of contaminating bacteria from alcoholic fermentation if additional tests on toxin application in fermentation shown to be successful. A wider panel of S. cerevisiae killer strains should be used to confirm that they were really unable to control the growth of these Gram-positive bacteria.


Este estudo mostrou a atividade antibacteriana in vitro de linhagens de leveduras killer contra bactérias contaminantes da fermentação alcoólica (Bacillus subtilis, Lactobacillus plantarum, Lactobacillus fermentum and Leuconostoc mesenteroides), em testes célula X célula e célula X toxina bruta. As bactérias não foram inibidas por linhagens killer de Saccharomyces cerevisiae (5 dentre 11). Os preparados brutos de toxina de duas leveduras (Trichosporon figueirae e Candida sp) causaram uma alta inibição no crescimento de L. plantarum, mas não na mesma extensão para B. subtilis, especialmente para três leveduras killer (Candida glabrata, Pichia anomala e Candida sp). Linhagens de L. mesenteroides e L. fermentum não foram inibidas em nenhum dos testes. Os resultados obtidos neste estudo sugerem a ação de toxinas killer de leveduras contra bactérias, a qual poderia ser utilizada para o biocontrole de bactérias contaminantes da fermentação alcoólica se testes posteriores de aplicação da toxina dentro das dornas de fermentação se mostrarem eficientes. Um número maior de linhagens killer de S. cerevisiae deveria ser utilizado para confirmar se elas realmente são incapazes de controlar o crescimento destas bactérias Gram-positivas.

SELECTION OF CITATIONS
SEARCH DETAIL
...