Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Nanomedicine (Lond) ; 19(3): 231-254, 2024 02.
Article in English | MEDLINE | ID: mdl-38284384

ABSTRACT

Aim: To synthesize HER2 aptamer-conjugated iron oxide nanoparticles with a coating of poly(2-(dimethylamino) ethyl methacrylate)-poly(2-methacryloyloxyethylphosphorylcholine) block copolymer (IONPPPs). Methods: Characterization covered molecular structure, chemical composition, thermal stability, magnetic characteristics, aptamer interaction, crystalline nature and microscopic features. Subsequent investigations focused on IONPPPs for in vitro cancer cell identification. Results: Results demonstrated high biocompatibility of the diblock copolymer with no significant toxicity up to 150 µg/ml. The facile coating process yielded the IONPP complex, featuring a 13.27 nm metal core and a 3.10 nm polymer coating. Functionalized with a HER2-targeting DNA aptamer, IONPPP enhanced recognition in HER2-amplified SKBR3 cells via magnetization separation. Conclusion: These findings underscore IONPPP's potential in cancer research and clinical applications, showcasing diagnostic efficacy and HER2 protein targeting in a proof-of-concept approach.


Subject(s)
Breast Neoplasms , Nanoparticles , Nylons , Humans , Female , Breast Neoplasms/drug therapy , Polymers/chemistry , Methacrylates/chemistry , Magnetic Iron Oxide Nanoparticles , Nanoparticles/chemistry
3.
PLoS One ; 14(2): e0211951, 2019.
Article in English | MEDLINE | ID: mdl-30753228

ABSTRACT

L-asparaginase (ASNase) from Escherichia coli is currently used in some countries in its PEGylated form (ONCASPAR, pegaspargase) to treat acute lymphoblastic leukemia (ALL). PEGylation refers to the covalent attachment of poly(ethylene) glycol to the protein drug and it not only reduces the immune system activation but also decreases degradation by plasmatic proteases. However, pegaspargase is randomly PEGylated and, consequently, with a high degree of polydispersity in its final formulation. In this work we developed a site-specific N-terminus PEGylation protocol for ASNase. The monoPEG-ASNase was purified by anionic followed by size exclusion chromatography to a final purity of 99%. The highest yield of monoPEG-ASNase of 42% was obtained by the protein reaction with methoxy polyethylene glycol-carboxymethyl N-hydroxysuccinimidyl ester (10kDa) in 100 mM PBS at pH 7.5 and PEG:ASNase ratio of 25:1. The monoPEG-ASNase was found to maintain enzymatic stability for more days than ASNase, also was resistant to the plasma proteases like asparaginyl endopeptidase and cathepsin B. Additionally, monoPEG-ASNase was found to be potent against leukemic cell lines (MOLT-4 and REH) in vitro like polyPEG-ASNase. monoPEG-ASNase demonstrates its potential as a novel option for ALL treatment, being an inventive novelty that maintains the benefits of the current enzyme and solves challenges.


Subject(s)
Asparaginase/chemistry , Asparaginase/metabolism , Polyethylene Glycols/metabolism , Asparaginase/isolation & purification , Asparaginase/pharmacology , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, Gel , Enzyme Stability , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
4.
Biotechnol Appl Biochem ; 66(3): 281-289, 2019 May.
Article in English | MEDLINE | ID: mdl-30597637

ABSTRACT

Crisantaspase is an asparaginase enzyme produced by Erwinia chrysanthemi and used to treat acute lymphoblastic leukemia (ALL) in case of hypersensitivity to Escherichia coli l-asparaginase (ASNase). The main disadvantages of crisantaspase are the short half-life (10 H) and immunogenicity. In this sense, its PEGylated form (PEG-crisantaspase) could not only reduce immunogenicity but also improve plasma half-life. In this work, we developed a process to obtain a site-specific N-terminal PEGylated crisantaspase (PEG-crisantaspase). Crisantaspase was recombinantly expressed in E. coli BL21(DE3) strain cultivated in a shaker and in a 2-L bioreactor. Volumetric productivity in bioreactor increased 37% compared to shaker conditions (460 and 335 U L-1  H-1 , respectively). Crisantaspase was extracted by osmotic shock and purified by cation exchange chromatography, presenting specific activity of 694 U mg-1 , 21.7 purification fold, and yield of 69%. Purified crisantaspase was PEGylated with 10 kDa methoxy polyethylene glycol-N-hydroxysuccinimidyl (mPEG-NHS) at different pH values (6.5-9.0). The highest N-terminal pegylation yield (50%) was at pH 7.5 with the lowest poly-PEGylation ratio (7%). PEG-crisantaspase was purified by size exclusion chromatography and presented a KM value three times higher than crisantaspase (150 and 48.5 µM, respectively). Nonetheless, PEG-crisantaspase was found to be more stable at high temperatures and over longer periods of time. In 2 weeks, crisantaspase lost 93% of its specific activity, whereas PEG-crisantaspase was stable for 20 days. Therefore, the novel PEG-crisantaspase enzyme represents a promising biobetter alternative for the treatment of ALL.


Subject(s)
Asparaginase/biosynthesis , Asparaginase/chemistry , Polyethylene Glycols/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Asparaginase/metabolism , Humans , Kinetics , Polyethylene Glycols/chemistry , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
5.
Braz. J. Pharm. Sci. (Online) ; 54(spe): e01009, 2018. tab, graf
Article in English | LILACS | ID: biblio-974429

ABSTRACT

The covalent attachment of polyethylene glycol (PEG) to therapeutical proteins is an important route to develop biobetters for biomedical, biotech and pharmaceutical industries. PEG conjugation can shield antigenic epitopes of the protein, reduce degradation by proteolytic enzymes, enhance long-term stability and maintain or even improve pharmacokinetic and pharmacodynamics characteristics of the protein drug. Nonetheless, correct information in terms of the PEGylation process from reaction to downstream processing is of paramount importance for the industrial application and processing scale-up. In this review we present and discuss the main steps in protein PEGylation, namely: PEGylation reaction, separation of the products and final characterization of structure and activity of the resulting species. These steps are not trivial tasks, reason why bioprocessing operations based on PEGylated proteins relies on the use of analytical tools according to the specific pharmaceutical conjugate that is being developed. Therefore, the appropriate selection of the technical and analytical methods may ensure success in implementing a feasible industrial process


Subject(s)
Polyethylene Glycols/classification , Biological Products/administration & dosage , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...