Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 8: txae092, 2024.
Article in English | MEDLINE | ID: mdl-38939728

ABSTRACT

Advancements in technology have ushered in a new era of sensor-based measurement and management of livestock production systems. These sensor-based technologies have the ability to automatically monitor feeding, growth, and enteric emissions for individual animals across confined and extensive production systems. One challenge with sensor-based technologies is the large amount of data generated, which can be difficult to access, process, visualize, and monitor information in real time to ensure equipment is working properly and animals are utilizing it correctly. A solution to this problem is the development of application programming interfaces (APIs) to automate downloading, visualizing, and summarizing datasets generated from precision livestock technology (PLT). For this methods paper, we develop three APIs and accompanying processes for rapid data acquisition, visualization, systems tracking, and summary statistics for three technologies (SmartScale, SmartFeed, and GreenFeed) manufactured by C-Lock Inc (Rapid City, SD). Program R markdown documents and example datasets are provided to facilitate greater adoption of these techniques and to further advance PLT. The methodology presented successfully downloaded data from the cloud and generated a series of visualizations to conduct systems checks, animal usage rates, and calculate summary statistics. These tools will be essential for further adoption of precision technology. There is huge potential to further leverage APIs to incorporate a wide range of datasets such as weather data, animal locations, and sensor data to facilitate decision-making on time scales relevant to researchers and livestock managers.

3.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37997926

ABSTRACT

Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research.


Livestock production is undergoing a new revolution of incorporating advanced technology to inform animal management. As more and more technologies come to market, new challenges arise with developing a workforce trained to handle big datasets generated from these technologies and turning datasets into insight for livestock producers. This can be especially challenging as multiple data streams ranging from climate and weather information to real-time metrics on animal performance need to be efficiently processed and incorporated into animal production models. Open-source code is one possible solution to these challenges because it is designed to be made publicly available so any user can view, alter, and improve upon existing code. This paper aims to highlight how open-source code can help address many of the challenges of precision livestock technology, including efficient data processing, data integration, development of decision tools, and training of future animal scientists. In addition, the need for open-source tutorials and datasets specific to animal science are included to help facilitate greater adoption of open science.


Subject(s)
Artificial Intelligence , Big Data , Humans , Animals , Software , Machine Learning , Models, Theoretical
4.
J Anim Sci ; 100(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35511692

ABSTRACT

Modern animal scientists, industry, and managers have never faced a more complex world. Precision livestock technologies have altered management in confined operations to meet production, environmental, and consumer goals. Applications of precision technologies have been limited in extensive systems such as rangelands due to lack of infrastructure, electrical power, communication, and durability. However, advancements in technology have helped to overcome many of these challenges. Investment in precision technologies is growing within the livestock sector, requiring the need to assess opportunities and challenges associated with implementation to enhance livestock production systems. In this review, precision livestock farming and digital livestock farming are explained in the context of a logical and iterative five-step process to successfully integrate precision livestock measurement and management tools, emphasizing the need for precision system models (PSMs). This five-step process acts as a guide to realize anticipated benefits from precision technologies and avoid unintended consequences. Consequently, the synthesis of precision livestock and modeling examples and key case studies help highlight past challenges and current opportunities within confined and extensive systems. Successfully developing PSM requires appropriate model(s) selection that aligns with desired management goals and precision technology capabilities. Therefore, it is imperative to consider the entire system to ensure that precision technology integration achieves desired goals while remaining economically and managerially sustainable. Achieving long-term success using precision technology requires the next generation of animal scientists to obtain additional skills to keep up with the rapid pace of technology innovation. Building workforce capacity and synergistic relationships between research, industry, and managers will be critical. As the process of precision technology adoption continues in more challenging and harsh, extensive systems, it is likely that confined operations will benefit from required advances in precision technology and PSMs, ultimately strengthening the benefits from precision technology to achieve short- and long-term goals.


Interest and investment in precision technologies are growing within the livestock sector. Though these technologies offer many promises of increased efficiency and reduced inputs, there is a need to assess the opportunities and challenges associated with precision technology implementation in livestock production systems. In this review, precision livestock measurement and management tools are explained in the context of a logical and iterative five-step process that highlights the need for systems computer modeling to realize anticipated benefits from these technologies and avoid unintended consequences. This review includes key case studies to highlight past challenges and current opportunities within operations that house animals in a central area or building with sufficient infrastructure (confined livestock production systems) and other operation settings that utilize large grasslands that contain far less infrastructure (extensive livestock production systems). The key to precision livestock management success is training the next generation of animal scientists in computer modeling, precision technologies, computer programming, and data science while still being grounded in traditional animal science principles.


Subject(s)
Animal Nutritional Physiological Phenomena , Livestock , Agriculture , Animals , Farms , Models, Theoretical
5.
J Anim Sci ; 100(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35419602

ABSTRACT

The field of animal science, and especially animal nutrition, relies heavily on modeling to accomplish its day-to-day objectives. New data streams ("big data") and the exponential increase in computing power have allowed the appearance of "new" modeling methodologies, under the umbrella of artificial intelligence (AI). However, many of these modeling methodologies have been around for decades. According to Gartner, technological innovation follows five distinct phases: technology trigger, peak of inflated expectations, trough of disillusionment, slope of enlightenment, and plateau of productivity. The appearance of AI certainly elicited much hype within agriculture leading to overpromised plug-and-play solutions in a field heavily dependent on custom solutions. The threat of failure can become real when advertising a disruptive innovation as sustainable. This does not mean that we need to abandon AI models. What is most necessary is to demystify the field and place a lesser emphasis on the technology and more on business application. As AI becomes increasingly more powerful and applications start to diverge, new research fields are introduced, and opportunities arise to combine "old" and "new" modeling technologies into hybrids. However, sustainable application is still many years away, and companies and universities alike do well to remain at the forefront. This requires investment in hardware, software, and analytical talent. It also requires a strong connection to the outside world to test, that which does, and does not work in practice and a close view of when the field of agriculture is ready to take its next big steps. Other research fields, such as engineering and automotive, have shown that the application power of AI can be far reaching but only if a realistic view of models as whole is maintained. In this review, we share our view on the current and future limitations of modeling and potential next steps for modelers in the animal sciences. First, we discuss the inherent dependencies and limitations of modeling as a human process. Then, we highlight how models, fueled by AI, can play an enhanced sustainable role in the animal sciences ecosystem. Lastly, we provide recommendations for future animal scientists on how to support themselves, the farmers, and their field, considering the opportunities and challenges the technological innovation brings.


Modeling in the animal sciences has received a boost by large-scale adoption of sensor technology, increased computing power, and the further development of artificial intelligence (AI) in the form of machine learning (ML) and deep learning (DL) models. Together with open-source programming languages, extensive modeling libraries, and heavy marketing, modeling reached a larger audience via AI. However, like most technological innovations, AI overpromised. By adopting an almost singular model-centric view to solving business needs, models failed to integrate with existing business processes. Models, especially AI, need data and both need humans. Together, they need room to learn and fail and by offering them as the end-solution to a problem, they are unable to act as sparring partners for all relevant stakeholders. In this article, we highlight fundamental model limitations exemplified via AI, and we offer solutions toward a more sustainable adoption of AI as a catalyst for modeling. This means sharing data and code and placing a more realistic view on models. Universities and industry both play a fundamental role in offering technological prowess and business experience to the future modeler. People, not technology, are the key to a more successful adoption of models.


Subject(s)
Artificial Intelligence , Ecosystem , Agriculture , Animals , Models, Theoretical
6.
Transl Anim Sci ; 3(2): 811-828, 2019 Mar.
Article in English | MEDLINE | ID: mdl-32704848

ABSTRACT

This paper was aimed to summarize known concepts needed to comprehend the intricate interface between the ruminant animal and the pasture when predicting animal performance, acknowledge current efforts in the mathematical modeling domain of grazing ruminants, and highlight current thinking and technologies that can guide the development of advanced mathematical modeling tools for grazing ruminants. The scientific knowledge of factors that affect intake of ruminants is broad and rich, and decision-support tools (DST) for modeling energy expenditure and feed intake of grazing animals abound in the literature but the adequate predictability of forage intake is still lacking, remaining a major challenge that has been deceiving at times. Despite the mathematical advancements in translating experimental research of grazing ruminants into DST, numerous shortages have been identified in current models designed to predict intake of forages by grazing ruminants. Many of which are mechanistic models that rely heavily on preceding mathematical constructions that were developed to predict energy and nutrient requirements and feed intake of confined animals. The data collection of grazing (forage selection, grazing behavior, pasture growth/regrowth, pasture quality) and animal (nutrient digestion and absorption, volatile fatty acids production and profile, energy requirement) components remains a critical bottleneck for adequate modeling of forage intake by ruminants. An unresolved question that has impeded DST is how to assess the quantity and quality, ideally simultaneously, of pasture forages given that ruminant animals can be selective. The inadequate assessment of quantity and quality has been a hindrance in assessing energy expenditure of grazing animals for physical activities such as walking, grazing, and forage selection of grazing animals. The advancement of sensors might provide some insights that will likely enhance our understanding and assist in determining key variables that control forage intake and animal activity. Sensors might provide additional insights to improve the quantification of individual animal variation as the sensor data are collected on each subject over time. As a group of scientists, however, despite many obstacles in animal and forage science research, we have thrived, and progress has been made. The scientific community may need to change the angle of which the problem has been attacked, and focus more on holistic approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...