Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 94: 43-52, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34995977

ABSTRACT

PURPOSE: In the context of synchrotron microtomography using propagation-based phase-contrast imaging (XSPCT), we evaluated the performance of semiautomatic and automatic image segmentation of soft biological structures by means of Dice Similarity Coefficient (DSC) and volume quantification. METHODS: We took advantage of the phase-contrast effects of XSPCT to provide enhanced object boundaries and improved visualization of the lenses of the frog Thoropa miliaris. Then, we applied semiautomatic segmentation methods 1 and 2 (Interpolation and Watershed, respectively) and method 3, an automatic segmentation algorithm using the U-Net architecture, to the reconstructed images. DSC and volume quantification of the lenses were used to quantify the performance of image segmentation methods. RESULTS: Comparing the lenses segmented by the three methods, the most pronounced difference in volume quantification was between methods 1 and 3: a reduction of 4.24%. Method 1, 2 and 3 obtained the global average DSC of 97.02%, 95.41% and 89.29%, respectively. Although it obtained the lowest DSC, method 3 performed the segmentation in a matter of seconds, while the semiautomatic methods had the average time to segment the lenses around 1 h and 30 min. CONCLUSIONS: Our results suggest that the performance of U-Net was impaired due to the irregularities of the ROI edges mainly in its lower and upper regions, but it still showed high accuracy (DSC = 89.29%) with significantly reduced segmentation time compared to the semiautomatic methods. Besides, with the present work we have established a baseline for future assessments of Deep Neural Networks applied to XSPCT volumes.


Subject(s)
Image Processing, Computer-Assisted , Synchrotrons , Microscopy, Phase-Contrast , Neural Networks, Computer , X-Ray Microtomography
2.
Appl Radiat Isot ; 133: 121-132, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29367125

ABSTRACT

X-ray Synchrotron Radiation Micro-Computed Tomography (SR-µCT) allows a better visualization in three dimensions with a higher spatial resolution, contributing for the discovery of aspects that could not be observable through conventional radiography. The automatic segmentation of SR-µCT scans is highly valuable due to its innumerous applications in geological sciences, especially for morphology, typology, and characterization of rocks. For a great number of µCT scan slices, a manual process of segmentation would be impractical, either for the time expended and for the accuracy of results. Aiming the automatic segmentation of SR-µCT geological sample images, we applied and compared Energy Minimization via Graph Cuts (GC) algorithms and Artificial Neural Networks (ANNs), as well as the well-known K-means and Fuzzy C-Means algorithms. The Dice Similarity Coefficient (DSC), Sensitivity and Precision were the metrics used for comparison. Kruskal-Wallis and Dunn's tests were applied and the best methods were the GC algorithms and ANNs (with Levenberg-Marquardt and Bayesian Regularization). For those algorithms, an approximate Dice Similarity Coefficient of 95% was achieved. Our results confirm the possibility of usage of those algorithms for segmentation and posterior quantification of porosity of an igneous rock sample SR-µCT scan.

SELECTION OF CITATIONS
SEARCH DETAIL
...