Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38645041

ABSTRACT

The inoculum effect has been observed for nearly all antibiotics and bacterial species. However, explanations accounting for its occurrence and strength are lacking. We previously found that growth productivity, which captures the relationship between [ATP] and growth, can account for the strength of the inoculum effect for bactericidal antibiotics. However, the molecular pathway(s) underlying this relationship, and therefore determining the inoculum effect, remain undiscovered. We show that nucleotide synthesis can determine the relationship between [ATP] and growth, and thus the strength of inoculum effect in an antibiotic class-dependent manner. Specifically, and separate from activity through the tricarboxylic acid cycle, we find that transcriptional activity of genes involved in purine and pyrimidine synthesis can predict the strength of the inoculum effect for ß-lactam and aminoglycosides antibiotics, respectively. Our work highlights the antibiotic class-specific effect of purine and pyrimidine synthesis on the severity of the inoculum effect and paves the way for intervention strategies to reduce the inoculum effect in the clinic.

2.
Sci Adv ; 8(50): eadd0924, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36516248

ABSTRACT

Understanding the mechanisms by which populations of bacteria resist antibiotics has implications in evolution, microbial ecology, and public health. The inoculum effect (IE), where antibiotic efficacy declines as the density of a bacterial population increases, has been observed for multiple bacterial species and antibiotics. Several mechanisms to account for IE have been proposed, but most lack experimental evidence or cannot explain IE for multiple antibiotics. We show that growth productivity, the combined effect of growth and metabolism, can account for IE for multiple bactericidal antibiotics and bacterial species. Guided by flux balance analysis and whole-genome modeling, we show that the carbon source supplied in the growth medium determines growth productivity. If growth productivity is sufficiently high, IE is eliminated. Our results may lead to approaches to reduce IE in the clinic, help standardize the analysis of antibiotics, and further our understanding of how bacteria evolve resistance.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...