Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 16(42): 23224-32, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25254435

ABSTRACT

Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

2.
J Phys Chem A ; 116(31): 8238-49, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22724623

ABSTRACT

Infrared fundamental intensities calculated by the quantum theory of atoms in molecules/charge-charge flux-dipole flux (QTAIM/CCFDF) method have been partitioned into charge, charge flux, and dipole flux contributions as well as their charge-charge flux, charge-dipole flux, and charge flux-dipole flux interaction contributions. The interaction contributions can be positive or negative and do not depend on molecular orientations in coordinate systems or normal coordinate phase definitions, as do CCFDF dipole moment derivative contributions. If interactions are positive, their corresponding dipole moment derivative contributions have the same polarity reinforcing the total intensity estimates whereas negative contributions indicate opposite polarities and lower CCFDF intensities. Intensity partitioning is carried out for the normal coordinates of acetylene, ethylene, ethane, all the chlorofluoromethanes, the X(2)CY (X = F, Cl; Y = O, S) molecules, the difluoro- and dichloroethylenes and BF(3). QTAIM/CCFDF calculated intensities with optimized quantum levels agree within 11.3 km mol(-1) of the experimental values. The CH stretching and in-plane bending vibrations are characterized by significant charge flux, dipole flux, and charge flux-dipole flux interaction contributions with the negative interaction tending to cancel the individual contributions resulting in vary small intensity values. CF stretching and bending vibrations have large charge, charge-charge flux, and charge-dipole flux contributions for which the two interaction contributions tend to cancel one another. The experimental CF stretching intensities can be estimated to within 31.7 km mol(-1) or 16.3% by a sum of these three contributions. However, the charge contribution alone is not successful at quantitatively estimating these CF intensities. Although the CCl stretching vibrations have significant charge-charge flux and charge-dipole flux contributions, like those of the CF stretches, both of these interaction contributions have opposite signs for these two types of vibrations.

SELECTION OF CITATIONS
SEARCH DETAIL