Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38809907

ABSTRACT

The properties of complex networked systems arise from the interplay between the dynamics of their elements and the underlying topology. Thus, to understand their behavior, it is crucial to convene as much information as possible about their topological organization. However, in large systems, such as neuronal networks, the reconstruction of such topology is usually carried out from the information encoded in the dynamics on the network, such as spike train time series, and by measuring the transfer entropy between system elements. The topological information recovered by these methods does not necessarily capture the connectivity layout, but rather the causal flow of information between elements. New theoretical frameworks, such as Integrated Information Decomposition (Φ-ID), allow one to explore the modes in which information can flow between parts of a system, opening a rich landscape of interactions between network topology, dynamics, and information. Here, we apply Φ-ID on in silico and in vitro data to decompose the usual transfer entropy measure into different modes of information transfer, namely, synergistic, redundant, or unique. We demonstrate that the unique information transfer is the most relevant measure to uncover structural topological details from network activity data, while redundant information only introduces residual information for this application. Although the retrieved network connectivity is still functional, it captures more details of the underlying structural topology by avoiding to take into account emergent high-order interactions and information redundancy between elements, which are important for the functional behavior, but mask the detection of direct simple interactions between elements constituted by the structural network topology.


Subject(s)
Computer Simulation , Models, Neurological , Nerve Net , Neurons , Nerve Net/physiology , Neurons/physiology , Animals , Entropy , Action Potentials/physiology
2.
Phys Rev E ; 108(2-1): 024315, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37723743

ABSTRACT

In neuronal systems, inhibition contributes to stabilizing dynamics and regulating pattern formation. Through developing mean-field theories of neuronal models, using complete graph networks, inhibition is commonly viewed as one "control parameter" of the system, promoting an absorbing phase transition. Here, we show that, for low connectivity sparse networks, inhibition weight is not a control parameter of the absorbing transition. We present analytical and simulation results using generic stochastic integrate-and-fire neurons that, under specific restrictions, become other simpler stochastic neuron models common in literature, which allows us to show that our results are valid for those models as well. We also give a simple explanation about why the inhibition role depends on topology, even when the topology has a dimensionality greater than the critical one. The absorbing transition independence of the inhibitory weight may be an important feature of a sparse network, as it will allow the network to maintain a near-critical regime, self-tuning average excitation, but at the same time have the freedom to adjust inhibitory weights for computation, learning, and memory, exploiting the benefits of criticality.

SELECTION OF CITATIONS
SEARCH DETAIL
...