Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 12: 840046, 2022.
Article in English | MEDLINE | ID: mdl-35707351

ABSTRACT

The protein kinase C (PKC) family of serine/threonine kinases are pleiotropic signaling regulators and are implicated in hematopoietic signaling and development. Only one isoform however, PKCϵ, has oncogenic properties in solid cancers where it is associated with poor outcomes. Here we show that PKCϵ protein is significantly overexpressed in acute myeloid leukemia (AML; 37% of patients). In addition, PKCϵ expression in AML was associated with a significant reduction in complete remission induction and disease-free survival. Examination of the functional consequences of PKCϵ overexpression in normal human hematopoiesis, showed that PKCϵ promotes myeloid differentiation, particularly of the monocytic lineage, and decreased colony formation, suggesting that PKCϵ does not act as an oncogene in hematopoietic cells. Rather, in AML cell lines, PKCϵ overexpression selectively conferred resistance to the chemotherapeutic agent, daunorubicin, by reducing intracellular concentrations of this agent. Mechanistic analysis showed that PKCϵ promoted the expression of the efflux pump, P-GP (ABCB1), and that drug efflux mediated by this transporter fully accounted for the daunorubicin resistance associated with PKCϵ overexpression. Analysis of AML patient samples also showed a link between PKCϵ and P-GP protein expression suggesting that PKCϵ expression drives treatment resistance in AML by upregulating P-GP expression.

2.
Leukemia ; 36(7): 1769-1780, 2022 07.
Article in English | MEDLINE | ID: mdl-35490198

ABSTRACT

RUNX3 is a transcription factor dysregulated in acute myeloid leukemia (AML). However, its role in normal myeloid development and leukemia is poorly understood. Here we investigate RUNX3 expression in both settings and the impact of its dysregulation on myelopoiesis. We found that RUNX3 mRNA expression was stable during hematopoiesis but decreased with granulocytic differentiation. In AML, RUNX3 mRNA was overexpressed in many disease subtypes, but downregulated in AML with core binding factor abnormalities, such as RUNX1::ETO. Overexpression of RUNX3 in human hematopoietic stem and progenitor cells (HSPC) inhibited myeloid differentiation, particularly of the granulocytic lineage. Proliferation and myeloid colony formation were also inhibited. Conversely, RUNX3 knockdown did not impact the myeloid growth and development of human HSPC. Overexpression of RUNX3 in the context of RUNX1::ETO did not rescue the RUNX1::ETO-mediated block in differentiation. RNA-sequencing showed that RUNX3 overexpression downregulates key developmental genes, such as KIT and RUNX1, while upregulating lymphoid genes, such as KLRB1 and TBX21. Overall, these data show that increased RUNX3 expression observed in AML could contribute to the developmental arrest characteristic of this disease, possibly by driving a competing transcriptional program favoring a lymphoid fate.


Subject(s)
Core Binding Factor Alpha 3 Subunit , Leukemia, Myeloid, Acute , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Oncogene Proteins, Fusion/genetics , RNA, Messenger , RUNX1 Translocation Partner 1 Protein/genetics , Translocation, Genetic
3.
Nanomaterials (Basel) ; 12(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35457962

ABSTRACT

Graphene-related two-dimensional nanomaterials possess very technically promising characteristics, but gaps exist regarding their potential adverse health effects. Based on their nano-thickness and lateral micron dimensions, nanoplates exhibit particular aerodynamic properties, including respirability. To develop a lung-focused, in vitro/in vivo screening approach for toxicological hazard assessment, various graphene-related nanoplates, i.e., single-layer graphene (SLG), graphene nanoplatelets (GNP), carboxyl graphene, graphene oxide, graphite oxide and Printex 90® (particle reference) were used. Material characterization preceded in vitro (geno)toxicity screening (membrane integrity, metabolic activity, proliferation, DNA damage) with primary rat alveolar macrophages (AM), MRC-5 lung fibroblasts, NR8383 and RAW 264.7 cells. Submerse cell exposure and material-adapted methods indicated material-, cell type-, concentration-, and time-specific effects. SLG and GNP were finally chosen as in vitro biologically active or more inert graphene showed eosinophils in lavage fluid for SLG but not GNP. The subsequent 28-day inhalation study (OECD 412) confirmed a toxic, genotoxic and pro-inflammatory potential for SLG at 3.2 mg/m3 with an in vivo-ranking of lung toxicity: SLG > GNP > Printex 90®. The in vivo ranking finally pointed to AM (lactate dehydrogenase release, DNA damage) as the most predictive in vitro model for the (geno)toxicity screening of graphene nanoplates.

4.
Sci Rep ; 12(1): 1243, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075235

ABSTRACT

RUNX proteins belong to a family of transcription factors essential for cellular proliferation, differentiation, and apoptosis with emerging data implicating RUNX3 in haematopoiesis and haematological malignancies. Here we show that RUNX3 plays an important regulatory role in normal human erythropoiesis. The impact of altering RUNX3 expression on erythropoiesis was determined by transducing human CD34+ cells with RUNX3 overexpression or shRNA knockdown vectors. Analysis of RUNX3 mRNA expression showed that RUNX3 levels decreased during erythropoiesis. Functionally, RUNX3 overexpression had a modest impact on early erythroid growth and development. However, in late-stage erythroid development, RUNX3 promoted growth and inhibited terminal differentiation with RUNX3 overexpressing cells exhibiting lower expression of glycophorin A, greater cell size and less differentiated morphology. These results suggest that suppression of RUNX3 is required for normal erythropoiesis. Overexpression of RUNX3 increased colony formation in liquid culture whilst, corresponding RUNX3 knockdown suppressed colony formation but otherwise had little impact. This study demonstrates that the downregulation of RUNX3 observed in normal human erythropoiesis is important in promoting the terminal stages of erythroid development and may further our understanding of the role of this transcription factor in haematological malignancies.


Subject(s)
Core Binding Factor Alpha 3 Subunit/metabolism , Erythroid Cells , Erythropoiesis , Cells, Cultured , Humans , Stem Cells
5.
Stem Cell Reports ; 13(2): 291-306, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31378673

ABSTRACT

Subversion of transcription factor (TF) activity in hematopoietic stem/progenitor cells (HSPCs) leads to the development of therapy-resistant leukemic stem cells (LSCs) that drive fulminant acute myeloid leukemia (AML). Using a conditional mouse model where zinc-finger TF Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to rapid and complete cell-autonomous loss of adult hematopoietic stem cells. By using short hairpin RNAi to target GATA2, we also identify a requirement for GATA2 in human HSPCs. In Meis1a/Hoxa9-driven AML, deletion of Gata2 impedes maintenance and self-renewal of LSCs. Ablation of Gata2 enforces an LSC-specific program of enhanced apoptosis, exemplified by attenuation of anti-apoptotic factor BCL2, and re-instigation of myeloid differentiation--which is characteristically blocked in AML. Thus, GATA2 acts as a critical regulator of normal and leukemic stem cells and mediates transcriptional networks that may be exploited therapeutically to target key facets of LSC behavior in AML.


Subject(s)
GATA2 Transcription Factor/genetics , Hematopoietic Stem Cells/metabolism , Animals , Apoptosis , Cell Self Renewal , Disease Models, Animal , GATA2 Transcription Factor/antagonists & inhibitors , GATA2 Transcription Factor/metabolism , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , RNA, Small Interfering/metabolism
6.
Toxicol In Vitro ; 47: 72-78, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29155207

ABSTRACT

1-(1-Naphthyl)piperazine (1-NPZ) is a serotonergic derivative of quipazine acting both as antagonist and agonist of different serotonin receptors, with promising results for the management of skin cancer. In this work, we studied the effect of 1-NPZ on human MNT-1 melanoma cells by evaluating its effects on cell viability, ability to form colonies, cell cycle dynamics, reactive oxygen species (ROS) production and apoptosis. Treatment of MNT-1 cells with 1-NPZ for 24h decreased cell viability and induced apoptosis in a dose-dependent manner. Activity against melanoma was confirmed with a different melanoma cell line, SK-MEL-28. Simultaneously, 1-NPZ affected cell cycle progression by mediating a S-phase delay. Higher levels of ROS were also detected in MNT-1 cells after treatment with 1-NPZ. Furthermore, 1-NPZ significantly increased the expression of cyclooxygenase-2 in MNT-1 cells. These findings suggest that 1-NPZ pretreatment is able to induce oxidative stress, and consequently apoptotic cell death in melanoma cells. In conclusion, this study demonstrates the cytotoxic and genotoxic potential of 1-NPZ against melanoma cells.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Melanoma/drug therapy , Oxidative Stress/drug effects , Piperazines/pharmacology , Serotonin Receptor Agonists/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Drug Resistance, Neoplasm , Enzyme Induction/drug effects , Humans , Immunosuppression Therapy , Interleukin-12 Subunit p35/agonists , Interleukin-12 Subunit p35/genetics , Interleukin-12 Subunit p35/metabolism , Melanoma/immunology , Melanoma/metabolism , Melanoma/pathology , Neoplasm Proteins/agonists , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Reactive Oxygen Species/agonists , Reactive Oxygen Species/metabolism , S Phase/drug effects , Serotonin Antagonists/pharmacology , p21-Activated Kinases/antagonists & inhibitors , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
7.
Eur J Pharm Biopharm ; 104: 101-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27131752

ABSTRACT

1-(1-Naphthyl)piperazine (1-NPZ) has shown promising effects by inhibiting UV radiation-induced immunosuppression. Ultradeformable vesicles are recent advantageous systems capable of improving the (trans)dermal drug delivery. The aim of this study was to investigate 1-NPZ-loaded transethosomes (NPZ-TE) and 1-NPZ-loaded vesicles containing dimethyl sulfoxide (NPZ-DM) as novel delivery nanosystems, and to uncover their chemopreventive effect against UV-induced acute inflammation. Their physicochemical properties were evaluated as follows: vesicles size and zeta potential by dynamic and electrophoretic light scattering, respectively; vesicle deformability by pressure driven transport; rheological behavior by measuring viscosity and I-NPZ entrapment yield by HPLC. In vitro topical delivery studies were performed in order to evaluate the permeation profile of both formulations, whereas in vivo studies sought to assess the photoprotective effect of the selected formulation on irradiated hairless mice by measuring myeloperoxidase activity and the secretion of proinflammatory cytokines. Either NPZ-TE or NPZ-DM exhibited positive results in terms of physicochemical properties. In vitro data revealed an improved permeation of 1-NPZ across pig ear skin, especially by NPZ-DM. In vivo studies demonstrated that NPZ-DM exposure was capable of preventing UVB-induced inflammation and blocking mediators of inflammation in mouse skin. The successful results here obtained encourage us to continue these studies for the management of inflammatory skin conditions that may lead to the development of skin cancers.


Subject(s)
Dermatitis/etiology , Piperazines/administration & dosage , Ultraviolet Rays , Animals , Cytokines/metabolism , In Vitro Techniques , Male , Mice , Mice, Hairless , Peroxidase/metabolism , Swine
8.
Mol Neurobiol ; 53(2): 1145-1164, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25589005

ABSTRACT

Exposure to UV radiation is the principal cause of nonmelanoma skin cancer, a process in which serotonin (5-HT) is intimately involved. This review focuses on the potential of serotonin receptors, namely 5-HT1/2A, as therapeutic targets for prevention of photocarcinogenesis. UV-induced immunosuppression is triggered by a cascade of events initiated when cis-urocanic acid, a UV photoreceptor present in the skin, binds to the serotonin receptor. Serotonin receptor antagonists will therefore attempt to block this association, and in turn, prevent skin cancer induction. In addition, 5-HT2A receptor antagonists are also capable of regulating DNA repair, including the acceleration of nucleotide excision repair. At the same time, UV-induced formation of reactive oxygen species is also reduced by these agents. Since the involvement of serotonin in photocarcinogenesis process is somewhat underexplored as a pertinent therapeutic effect, this review intends to reveal the use of serotonergic drugs as an important strategy to prevent and/or inhibit photocarcinogenesis. Considering the emergency of developing novel therapeutic strategies for skin cancer management, the use of these agents, whose benefits have partially been studied, may be crucial especially if topically applied. Topical nanoformulations containing serotonin receptor agonists and/or antagonists also represent a pioneer concept in this area. Graphical Abstract ᅟ.


Subject(s)
Carcinogenesis/pathology , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin 5-HT1 Receptor Agonists/therapeutic use , Serotonin 5-HT2 Receptor Antagonists/therapeutic use , Ultraviolet Rays/adverse effects , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...