Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(1): 323-335, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33305766

ABSTRACT

This work describes the synthesis of three new ruthenium(ii) complexes with gallic acid and derivatives of the general formula [Ru(L)(dppb)(bipy)]PF6, where L = gallate (GAC), benzoate (BAC), and esterified-gallate (EGA), bipy = 2,2'-bipyridine and dppb = 1,4-bis(diphenylphosphino)butane. The complexes were characterized by elemental analysis, molar conductivity, NMR, cyclic voltammetry, UV-vis and IR spectroscopy, and two of them by X-ray crystallography. Cell viability assays show promising results, indicating higher cytotoxicity of the complexes in MDA-MB-231 cells, a triple-negative breast cancer (TNBC) cell line, compared with the hormone-dependent MCF-7 cell line. Studies in vitro with the MDA-MB-231 cell line showed that only Ru(BAC) and Ru(GAC) interacted with BSA. Besides that, the Ru(GAC) complex, which has a polyphenolic acid, interacted in an apo-Tf structure and function dependent manner and it was able to inhibit the formation of reactive oxygen species. Ru(GAC) was able to cause damage to the cellular cytoskeleton leading to inhibition of some cellular processes of TNBC cells, such as invasion, migration, and adhesion.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Gallic Acid/pharmacology , Pyridines/pharmacology , Ruthenium/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Actin Cytoskeleton/drug effects , Animals , Apoproteins/metabolism , Biphenyl Compounds/chemistry , Cell Adhesion/drug effects , Cell Line , Cell Movement/drug effects , Cell Survival/drug effects , Coordination Complexes/chemistry , Gallic Acid/chemistry , Humans , Mice , Picrates/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Serum Albumin, Bovine/metabolism , Transferrin/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
2.
Mol Pharm ; 16(3): 1167-1183, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30633527

ABSTRACT

The triple-negative breast cancer subtype (TNBC) is highly aggressive and metastatic and corresponds to 15-20% of diagnosed cases. TNBC treatment is hampered, because these cells usually do not respond to hormonal therapy, and they develop resistance to chemotherapeutic drugs. On the other hand, the severe side effects of cisplatin represent an obstacle for its clinical use. Ruthenium (Ru)-based complexes have emerged as promising antitumor and antimetastatic substitutes for cisplatin. In this study, we demonstrated the effects of a Ru/biphosphine complex, containing gallic acid (GA) as a ligand, [Ru(GA)(dppe)2]PF6, hereafter called Ru(GA), on a TNBC cell line, and compared them to the effects in a nontumor breast cell line. Ru(GA) complex presented selective cytotoxicity against TNBC over nontumor cells, inhibited its migration and invasion, and induced apoptosis. These effects were associated with the increased amount of transferrin receptors (TfR) on tumor cells, compared to nontumor ones. Silencing of TfR decreased Ru(GA) effects on TNBC cells, demonstrating that these receptors were at least partially responsible for Ru(GA) delivery into tumor cells. The Ru(GA) compound must be further studied in different in vivo assays in order to investigate its antitumor properties and its toxicity in complex biological systems.


Subject(s)
Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Gallic Acid/chemistry , Receptors, Transferrin/metabolism , Ruthenium/chemistry , Triple Negative Breast Neoplasms/pathology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biological Transport, Active , Cell Line, Tumor , Cell Movement/drug effects , Cisplatin/adverse effects , Cisplatin/pharmacology , DNA, Neoplasm/metabolism , Female , Humans , Ligands , Molecular Structure , Neoplasm Invasiveness , Serum Albumin, Human/metabolism , Transferrin/metabolism
3.
Biochim Biophys Acta Biomembr ; 1861(1): 178-190, 2019 01.
Article in English | MEDLINE | ID: mdl-30463701

ABSTRACT

Antimicrobial peptides (AMPs) are promising candidates for the development of future antibiotics. In an attempt to increase the efficacy of therapeutic AMPs, computer-based design methods appear as a reliable strategy. In this study, we evaluated the antimicrobial efficiency and mechanism of action of a novel designed AMP named PaDBS1R1, previously designed by means of the Joker algorithm, using a fragment of the ribosomal protein L39E from the archaeon Pyrobaculum aerophilum as a template. PaDBS1R1 displayed low micromolar broad-spectrum antimicrobial activity against Gram-negative (MIC of 1.5 µM) and Gram-positive (MIC of 3 µM) bacteria, including carbapenem-resistant Klebsiella pneumoniae (MIC of 6.25 µM) and methicillin-resistant Staphylococcus aureus (MIC of 12.5 µM), without cytotoxicity towards HEK-293 cells. In addition, membrane permeabilization and depolarization assays, combined with time-kill studies and FEG-SEM imaging, indicated a fast membrane permeation and further leakage of intracellular content. Biophysical studies with lipid vesicles show a preference of PaDBS1R1 for Gram-negative bacteria-like membranes. We investigated the three-dimensional structure of PaDBS1R1 by CD and NMR analyses. Our results suggest that PaDBS1R1 adopts an amphipathic α-helix upon interacting with hydrophobic environments, after an initial electrostatic interaction with negative charges, suggesting a membrane lytic effect. This study reveals that PaDBS1R1 has potential application in antibiotic therapy.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Anti-Bacterial Agents/pharmacology , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Circular Dichroism , Gram-Negative Bacteria , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Light , Lipids/chemistry , Magnetic Resonance Spectroscopy , Methicillin-Resistant Staphylococcus aureus/drug effects , Micelles , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Protein Conformation, alpha-Helical , Scattering, Radiation
4.
PLoS One ; 11(6): e0158029, 2016.
Article in English | MEDLINE | ID: mdl-27355378

ABSTRACT

A comprehensive investigation of anhydrous form of 3,4,5-Triacetoxybenzoic acid (TABA) is reported. Single crystal X-ray diffraction, Thermal analysis, Fourier Transform Infrared spectroscopy (FTIR) and DFT calculations were applied for TABA characterization. This anhydrous phase crystallizes in the triclinic [Formula: see text] space group (Z' = 1) and its packing shows a supramolecular motif in a classical [Formula: see text] ring formed by acid-acid groups association. The phase stability is accounted in terms of supramolecular architecture and its thermal behaviour. Conformation search at B3LYP/6-311++G(2d,p) level of theory shows the existence of three stable conformers and the most stable conformation was found experimentally. The reactivity of TABA was investigated using the molecular orbital theory and molecular electrostatic potential. The calculation results were used to simulate the infrared spectrum. There is a good agreement between calculated and experimental IR spectrum, which allowed the assignment of the normal vibrational modes.


Subject(s)
Acetates/chemistry , Gallic Acid/analogs & derivatives , Hydroxybenzoates/chemistry , Crystallography, X-Ray , Dimerization , Gallic Acid/chemistry , Infrared Rays , Molecular Conformation , Spectroscopy, Fourier Transform Infrared , Static Electricity , Temperature , Thermogravimetry , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...