Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 333: 108773, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-32739634

ABSTRACT

The present work aimed to evaluate and to model the influence of UV-C light treatments with different irradiances (6.5, 13, 21, and 36 W/m2) on Aspergillus fischeri and Paecilomyces niveus ascospores inactivation in clarified apple juice. Approximately 5.0 and 6.0 log CFU/mL spores of P. niveus and A. fischeri, respectively, were suspended in 30 mL of clarified apple juice (pH 3.8, 12 ± 0.1°Brix) and exposed to UV-C light at different irradiances (as above) and exposure times (0 to 30 min). The first-order biphasic model was able to describe the experimental data with good statistical indices (RMSE = 0.296 and 0.308, R2 = 0.96 and 0.98, for P. niveus and A. fischeri respectively). At the highest irradiance level tested (36 W/m2), the UV-C light allowed the reduction of 5.7 and 4.2 log-cycles of A. fischeri and P. niveus ascospores, respectively, in approximately 10 min. P. niveus was the most UV-C resistant mould. The results showed that, to a defined UV-C fluence, a change in the level of either time or UV-C irradiance did not affect the effectiveness of UV-C light for A. fischeri and P. niveus inactivation. Thus, the modeling of the inactivation as a function of the UV-C fluence allowed the estimation of the primary model parameters with all experimental data and, consequently, no secondary models were needed. The model parameters were validated with experiments of variable UV-C fluences. Accordingly, experimental results allowed to conclude that UV-C treatment at the irradiances tested is a promising application for preventing A. fischeri and P. niveus spoilage of juices.


Subject(s)
Aspergillus/radiation effects , Fruit and Vegetable Juices/microbiology , Paecilomyces/radiation effects , Spores, Fungal/radiation effects , Ultraviolet Rays , Byssochlamys/classification , Food Microbiology , Malus/microbiology , Neosartorya/classification
2.
Int J Biol Macromol ; 164: 489-498, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32693130

ABSTRACT

This study aimed to understand the effect of silver nanoparticles (AgNPs) on physiochemical properties of hydroxypropyl methylcellulose (HPMC) film-forming solutions (FFS) and nanocomposite films (NCF), as well as the efficacy of these materials to control the development of anthracnose caused by Colletotrichum gloeosporioides in papaya (Carica papaya L.). FFS were characterized by pH, particle size distribution, and rheology. In addition, thickness, morphology, water contact angle, barrier, chemical, crystallinity, thermal, and mechanical properties from NCF were investigated. The minimum inhibitory concentration of AgNPs against C. gloeosporioides was determined by in vitro test. FFS with 0.25 wt% of AgNPs were used as coatings in papayas inoculated with C. gloeosporioides. Finally, the physicochemical parameters were investigated during their storing up to 7 days at 10 °C, followed by 7 days at 20 °C. The presence of AgNPs impacted the thickness, morphology, moisture content, chemical bonds, crystalline structure, and thermal properties of films. Coatings with 0.25 wt% of AgNPs reduced the incidence and severity of C. gloeosporioides and avoided the weight loss of papayas during storing. The ripening of papaya occurred naturally, showing that the coating only delayed this process. Thus, HPMC-AgNPs coating can be an alternative to extend the papaya shelf life.


Subject(s)
Antifungal Agents/pharmacology , Carica/microbiology , Colletotrichum/drug effects , Hypromellose Derivatives/chemistry , Silver/pharmacology , Antifungal Agents/chemistry , Carica/drug effects , Colletotrichum/pathogenicity , Edible Films , Food Storage , Fruit/chemistry , Metal Nanoparticles , Microbial Sensitivity Tests , Nanocomposites , Plant Diseases/prevention & control , Silver/chemistry
3.
Int J Food Microbiol ; 296: 43-47, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30849705

ABSTRACT

Ascospores of Neosartorya fischeri are heat-resistant and can survive thermal commercial treatments normally applied to the juices, as apple juice. Non-thermal processing of food such as exposure to ultraviolet light (UV-C) is reported to induce minimal quality changes while reduces microbial load. The main objective of this study was to determine the effect at different soluble solids concentration (12, 25, 30, 40, 50, 60 and 70 °Brix) on N. fischeri ascospores inactivation in apple juice, using UV-C light intensity (38 W/m2). Weibull model was fitted to experimental data. Then, a secondary model was used to describe how the inactivation kinetic parameters varied with the changes in soluble solids concentration. Results showed that the UV-C light had influence on N. fischeri ascospores inactivation in apple juice even at the highest soluble solids concentrations used, reaching approximately 4 log reductions at all concentrations used. The inactivation parameters, obtained by Weibull model, were δ (dose for the first decimal reduction) and p (the shape factor). Exponential model was chosen to describe the influence of soluble solids concentration on δ and p parameters. It can be concluded that UV-C light is a promising treatment with a drastic impact on the loads of N. fischeri, especially when low soluble solids concentration is used and a model was obtained to describe Brix effect.


Subject(s)
Fruit and Vegetable Juices/microbiology , Malus/microbiology , Neosartorya/radiation effects , Spores/radiation effects , Ultraviolet Rays , Colony Count, Microbial , Hot Temperature , Kinetics
4.
Meat Sci ; 139: 113-119, 2018 May.
Article in English | MEDLINE | ID: mdl-29413670

ABSTRACT

The present study modeled the effect of oregano essential oil, as an antimicrobial agent, on the shelf-life of vacuum-packed cooked sliced ham, based on the growth of lactic acid bacteria natural microbiota under isothermal conditions. The bacterial growth in ham without oregano essential oil (control) and with 0.4% oregano essential oil (v/w) was evaluated at five different temperatures (6, 12, 15, 20 and 25°C). Baranyi and Roberts, and modified Gompertz primary models were fitted to microbial growth curves. Square Root and Exponential secondary models were fitted to µmax parameter data. The addition of oregano essential oil increased lag phase, decreased growth rates and extended shelf-life of ham for all temperatures (at 6°C extended for, at least, 30days when compared to control). Statistical indexes showed that Baranyi and Roberts, and Exponential were the primary and secondary models, respectively, that better fit to the data. Thus, oregano essential oil showed a good antimicrobial effect and extended the ham shelf-life.


Subject(s)
Anti-Infective Agents/pharmacology , Meat Products/microbiology , Oils, Volatile/pharmacology , Origanum/chemistry , Animals , Food Microbiology , Food Preservatives/pharmacology , Food Storage , Lactobacillales/drug effects , Lactobacillales/growth & development , Meat Products/analysis , Swine , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...