Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 13(13): e2303785, 2024 05.
Article in English | MEDLINE | ID: mdl-38221504

ABSTRACT

Type 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented. The platform reproduces key aspects of the metabolic cross-talk between both organs, including glucose levels and selected hormones, and supports the viability and functionality of both sc-islet and sc-liver organoids while preserving a reduced release of pro-inflammatory cytokines. In a model of metabolic disruption in response to treatment with high lipids and fructose, sc-liver organoids exhibit hallmarks of steatosis and insulin resistance, while sc-islets produce pro-inflammatory cytokines on-chip. Finally, the platform reproduces known effects of anti-diabetic drugs on-chip. Taken together, the platform provides a basis for functional studies of obesity, T2DM, and MASLD on-chip, as well as for testing potential therapeutic interventions.


Subject(s)
Islets of Langerhans , Lab-On-A-Chip Devices , Liver , Organoids , Humans , Liver/metabolism , Organoids/metabolism , Islets of Langerhans/metabolism , Diabetes Mellitus, Type 2/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Glucose/metabolism
2.
Int J Numer Method Biomed Eng ; 37(5): e3445, 2021 05.
Article in English | MEDLINE | ID: mdl-33522149

ABSTRACT

Organ-on-a-chip (OoaC) are microfluidic devices capable of growing living tissue and replicate the intricate microenvironments of human organs in vitro, being heralded as having the potential to revolutionize biological research and healthcare by providing unprecedented control over fluid flow, relevant tissue to volume ratio, compatibility with high-resolution content screening and a reduced footprint. Finite element modelling is proven to be an efficient approach to simulate the microenvironments of OoaC devices, and may be used to study the existing correlations between geometry and hydrodynamics, towards developing devices of greater accuracy. The present work aims to refine a steady-state gradient generator for the development of a more relevant human liver model. For this purpose, the finite element method was used to simulate the device and predict which design settings, expressed by individual parameters, would better replicate in vitro the oxygen gradients found in vivo within the human liver acinus. To verify the model's predictive capabilities, two distinct examples were replicated from literature. Finite element analysis enabled obtaining an ideal solution, designated as liver gradient-on-a-chip, characterised by a novel way to control gradient generation, from which it was possible to determine concentration values ranging between 3% and 12%, thus providing a precise correlation with in vivo oxygen zonation, comprised between 3%-5% and 10%-12% within respectively the perivenous and periportal zones of the human liver acinus. Shear stress was also determined to average the value of 0.037 Pa, and therefore meet the interval determined from literature to enhance liver tissue culture, comprised between 0.01 - 0.05 Pa.


Subject(s)
Lab-On-A-Chip Devices , Liver , Finite Element Analysis , Humans , Oxygen , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...