Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement (N Y) ; 7(1): e12155, 2021.
Article in English | MEDLINE | ID: mdl-33816762

ABSTRACT

INTRODUCTION: Subjects exhibiting subjective cognitive decline (SCD) are at an increased risk for mild cognitive impairment and dementia. Given the delay between risk exposure and disease onset, SCD individuals are increasingly considered a good target population for cost-effective lifestyle-based Alzheimer's disease prevention trials. METHODS: The PENSA study is a randomized, double-blind, controlled clinical trial that aims to evaluate the efficacy of a personalized multimodal intervention in lifestyle (diet counseling, physical activity, cognitive training, and social engagement) combined with the use of epigallocatechin gallate (EGCG) over 12 months, in slowing down cognitive decline and improving brain connectivity. The study population includes 200 individuals meeting SCD criteria and carrying the apolipoprotein E ε4 allele, who will be randomized into four treatment arms (multimodal intervention + EGCG/placebo, or lifestyle recommendations + EGCG/placebo). The primary efficacy outcome is change in the composite score for cognitive performance measured with the Alzheimer's Disease Cooperative Study Preclinical Alzheimer Cognitive Composite (ADCS-PACC-like) adding to the original version the Interference score from the Stroop Color and Word Test and the Five Digit Test. Secondary efficacy outcomes are (1) change in functional magnetic resonance imaging (fMRI) and structural neuronal connectivity (structural MRI) and (2) the safety assessment of the EGCG compound. This study is framed within the WW-FINGERS consortium. DISCUSSION: The use of new technologies (i.e., mobile ecological momentary assessments [EMAs], activity tracker) in the PENSA study allows the collection of continuous data on lifestyle behaviors (diet and physical activity) and mood, enabling a personalized design as well as an intensive follow-up of participants. These data will be used to give feedback to participants about their own performance along the intervention, promoting their involvement and adherence. The results of the study may aid researchers on the design of future clinical trials involving preventive lifestyle multicomponent interventions.

2.
Curr Biol ; 20(6): 513-20, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20226662

ABSTRACT

Tissue remodeling in development and disease involves the coordinated invasion of neighboring territories and/or the replacement of entire cell populations. Cell guidance, cell matching, transitions from passive to migratory epithelia, cell growth and death, and extracellular matrix remodeling all impinge on epithelial spreading. Significantly, the extracellular signals that direct these activities and the specific cellular elements and mechanisms regulated by these signals remain in most cases to be identified. To address these issues, we performed an analysis of histoblasts (Drosophila abdominal epithelial founder cells) on their transition from a dormant state to active migration replacing obsolete larval epidermal cells (LECs). We found that during expansion, Decapentaplegic (Dpp) secreted from surrounding LECs leads to graded pathway activation in cells at the periphery of histoblast nests. Across nests, Dpp activity confers differential cellular behavior and motility by modulating cell-cell contacts, the organization and activity of the cytoskeleton, and histoblast attachment to the substrate. Furthermore, Dpp also prevents the premature death of LECs, allowing the coordination of histoblast expansion to LEC delamination. Dpp signaling activity directing histoblast spreading and invasiveness mimics transforming growth factor-beta and bone morphogenetic proteins' role in enhancing the motility and invasiveness of cancer cells, resulting in the promotion of metastasis.


Subject(s)
Drosophila Proteins/physiology , Drosophila/growth & development , Drosophila/physiology , Actins/physiology , Animals , Animals, Genetically Modified , Autocrine Communication , Base Sequence , Cell Adhesion/physiology , Cell Movement/physiology , DNA Primers/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Epithelial Cells/cytology , Epithelial Cells/physiology , Epithelium/growth & development , Green Fluorescent Proteins/genetics , Larva/cytology , Larva/growth & development , Morphogenesis , Paracrine Communication , Recombinant Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...