Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(27): 17600-17610, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38916257

ABSTRACT

Hafnia-based ferroelectric (FE) thin films are promising candidates for semiconductor memories. However, a fundamental challenge that persists is the lack of understanding regarding dimensional scaling, including thickness scaling and area scaling, of the functional properties and their heterogeneity in these films. In this work, excellent ferroelectricity and switching endurance are demonstrated in 4 nm-thick Hf0.5Zr0.5O2 (HZO) capacitors with molybdenum electrodes in capacitors as small as 65 nm × 45 nm in size. The HZO layer in these capacitors can be crystallized into the ferroelectric orthorhombic phase at the low temperature of 400 °C, making them compatible for back-end-of-line (BEOL) FE memories. With the benefits of thickness scaling, low operation voltage (1.2 V) is achieved with high endurance (>1010 cycles); however, a significant fatigue regime is noted. We observed that the bottom electrode, rather than the top electrode, plays a dominant role in the thickness scaling of HZO ferroelectric behavior. Furthermore, ultrahigh switched polarization (remanent polarization 2Pr ∼ 108 µC cm-2) is observed in some nanoscale devices. This study advances the understanding of dimensional scaling effects in HZO capacitors for high-performance FE memories.

2.
Nano Lett ; 24(19): 5799-5807, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38701332

ABSTRACT

Controlled growth of semiconductor nanowires with atomic precision offers the potential to tune the material properties for integration into scalable functional devices. Despite significant progress in understanding the nanowire growth mechanism, definitive control over atomic positions of its constituents, structure, and morphology via self-assembly remains challenging. Here, we demonstrate an exquisite control over synthesis of cation-ordered nanoscale superstructures in Ge-Sb-Te nanowires with the ability to deterministically vary the nanowire growth direction, crystal facets, and periodicity of cation ordering by tuning the relative precursor flux during synthesis. Furthermore, the role of anisotropy on material properties in cation-ordered nanowire superstructures is illustrated by fabricating phase-change memory (PCM) devices, which show significantly different growth direction dependent amorphization current density. This level of control in synthesizing chemically ordered nanoscale superstructures holds potential to precisely modulate fundamental material properties such as the electronic and thermal transport, which may have implications for PCM, thermoelectrics, and other nanoelectronic devices.

3.
Nat Commun ; 15(1): 4541, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806541

ABSTRACT

In nature, structural and functional materials often form programmed three-dimensional (3D) assembly to perform daily functions, inspiring researchers to engineer multifunctional 3D structures. Despite much progress, a general method to fabricate and assemble a broad range of materials into functional 3D objects remains limited. Herein, to bridge the gap, we demonstrate a freeform multimaterial assembly process (FMAP) by integrating 3D printing (fused filament fabrication (FFF), direct ink writing (DIW)) with freeform laser induction (FLI). 3D printing performs the 3D structural material assembly, while FLI fabricates the functional materials in predesigned 3D space by synergistic, programmed control. This paper showcases the versatility of FMAP in spatially fabricating various types of functional materials (metals, semiconductors) within 3D structures for applications in crossbar circuits for LED display, a strain sensor for multifunctional springs and haptic manipulators, a UV sensor, a 3D electromagnet as a magnetic encoder, capacitive sensors for human machine interface, and an integrated microfluidic reactor with a built-in Joule heater for nanomaterial synthesis. This success underscores the potential of FMAP to redefine 3D printing and FLI for programmed multimaterial assembly.

4.
Nano Lett ; 24(19): 5737-5745, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38686670

ABSTRACT

Tungsten oxide (WO3) doped indium oxide (IWO) field-effect transistors (FET), synthesized using atomic layer deposition (ALD) for three-dimensional integration and back-end-of-line (BEOL) compatibility, are demonstrated. Low-concentration (1∼4 W atom %) WO3-doping in In2O3 films is achieved by adjusting cycle ratios of the indium and tungsten precursors with the oxidant coreactant. Such doping suppresses oxygen deficiency from In2O2.5 to In2O3 stoichiometry with only 1 atom % W, allowing devices to turn off stably and enhancing threshold voltage stability. The ALD IWO FETs exhibit superior performance, including a low subthreshold slope of 67 mV/decade and negligible hysteresis. Strong tunability of the threshold voltage (Vth) is achieved through W concentration tuning, with 2 atom % IWO FETs showing an optimized Vth for enhancement-mode and a high drain current. ALD IWO FETs have remarkable stability under bias stress and nearly ideal performance extending to sub-100 nm channel lengths, making them promising candidates for high-performance monolithic 3D integrated devices.

5.
ACS Appl Mater Interfaces ; 15(51): 59693-59703, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38090759

ABSTRACT

Two-dimensional materials, such as transition metal dichalcogenides (TMDCs), have the potential to revolutionize the field of electronics and photonics due to their unique physical and structural properties. This research presents a novel method for synthesizing crystalline TMDCs crystals with <10 nm size using ultrafast migration of vacancies at elevated temperatures. Through in situ and ex situ processing and using atomic-level characterization techniques, we analyzed the shape, size, crystallinity, composition, and strain distribution of these nanocrystals. These nanocrystals exhibit electronic structure signatures that differ from the 2D bulk: i.e., uniform mono- and multilayers. Further, our in situ, vacuum-based synthesis technique allows observation and comparison of defect and phase evolution in these crystals formed under van der Waals heterostructure confinement versus unconfined conditions. Overall, this research demonstrates a solid-state route to synthesizing uniform nanocrystals of TMDCs and lays the foundation for materials science in confined 2D spaces under extreme conditions.

6.
ACS Appl Mater Interfaces ; 15(43): 50246-50253, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37856882

ABSTRACT

Ferroelectric materials have been widely researched for applications in memory and energy storage. Among these materials and benefiting from their excellent chemical compatibility with complementary metal-oxide-semiconductor (CMOS) devices, hafnia-based ferroelectric thin films hold great promise for highly scaled semiconductor memories, including nonvolatile ferroelectric capacitors and transistors. However, variation in the switched polarization of this material during field cycling and a limited understanding of the responsible mechanisms have impeded their implementation in technology. Here, we show that ferroelectric Hf0.5Zr0.5O2 (HZO) capacitors that are nearly free of polarization "wake-up"─a gradual increase in switched polarization as a function of the number of switching cycles─can be achieved by introducing ultrathin HfO2 buffer layers at the HZO/electrodes interface. High-resolution transmission electron microscopy (HRTEM) reveals crystallite sizes substantially greater than the film thickness for the buffer layer capacitors, indicating that the presence of the buffer layers influences the crystallization of the film (e.g., a lower ratio of nucleation rate to growth rate) during postdeposition annealing. This evidently promotes the formation of a polar orthorhombic (O) phase in the as-fabricated buffer layer samples. Synchrotron X-ray diffraction (XRD) reveals the conversion of the nonpolar tetragonal (T) phase to the polar orthorhombic (O) phase during electric field cycling in the control (no buffer) devices, consistent with the polarization wake-up observed for these capacitors. The extent of T-O transformation in the nonbuffer samples is directly dependent on the duration over which the field is applied. These results provide insight into the role of the HZO/electrodes interface in the performance of hafnia-based ferroelectrics and the mechanisms driving the polarization wake-up effect.

7.
Nanoscale ; 15(31): 13086-13093, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37498524

ABSTRACT

We report the observation of Kirkendall voids at the epitaxial titanium nitride (TiN)/magnesium oxide(MgO)(001) interface. While epitaxial growth of TiN on MgO has been known for years, many reports show a perfectly sharp epitaxial interface. Because TiN is a prototypical diffusion barrier material, observing the consequence of rapid diffusion at a TiN interface is interesting. Structural characterization of the interface using X-ray diffraction and electron microscopy confirms the diffuse nature of the interface. Rectangular voids that form at the TiN/MgO(001) interface and extend into both TiN and MgO result from a large chemical potential gradient at the interface, which contributes a strong chemical driving force for diffusion. The spatial localization of the observed voids is limited to within ∼10 nm from the interface, consistent with a chemical potential gradient driving force. A composition gradient on the nanometer scale is also observed. Observation of Kirkendall voids at this nitride/oxide interface suggests possibilities for engineering oxygen and nitrogen vacancies at thin film interfaces.

8.
Nanoscale Horiz ; 8(5): 674-684, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36912611

ABSTRACT

We report the growth of epitaxial wurtzite AlScN thin films on Si (111) substrates with a wide range of Sc concentrations using ultra-high vacuum reactive sputtering. Sc alloying in AlN enhances piezoelectricity and induces ferroelectricity, and epitaxial thin films facilitate systematic structure-based investigations of this important and emerging class of materials. Two main effects are observed as a function of increasing Sc concentration. First, increasing crystalline disorder is observed together with a structural transition from wurtzite to rocksalt at ∼30 at% Sc. Second, nanoscale compositional segregation consistent with spinodal decomposition occurs at intermediate compositions, before the wurtzite to rocksalt phase boundary is reached. Lamellar features arising from composition fluctuations are correlated with polarization domains in AlScN, suggesting that composition segregation can influence ferroelectric properties. The present results provide a route to the creation of single crystal AlScN films on Si (111), as well as a means for self-assembled composition modulation.

9.
Nano Lett ; 22(12): 4733-4740, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35675304

ABSTRACT

Two-dimensional (2D) PtSe2 has potential applications in near-infrared optoelectronics because its band gap can be tuned by varying the layer thickness. There are several different platinum-selenide phases with different stoichiometries that result from high-temperature processing. In this report, we use in situ scanning/transmission electron microscopy (STEM) to investigate high-temperature phase transitions in 2D PtSe2 and observe interfacial reactions as well as the Kirkendall effect. The 2D nature of PtSe2 plays a key role in the unique one-dimensional interfaces that result during the formation of Se-poor phases (PtSe and PtSe1-x) at the edges of the PtSe2 crystals. The activation energy extracted for this formation suggests that the process is mediated by Se vacancies, as evidenced by the large strain variations in the material made via 4D STEM measurements. The observation of the Kirkendall effect in a 2D material suggests routes to engineer 1D edge chemistry for contact engineering in device applications.


Subject(s)
Platinum , Photochemical Processes , Platinum/chemistry , Selenium Compounds , Semiconductors
10.
Nanoscale ; 13(41): 17547-17555, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34652350

ABSTRACT

Core-shell Ge/GeSn nanowires provide a route to dislocation-free single crystal germanium-tin alloys with desirable light emission properties because the Ge core acts as an elastically compliant substrate during misfitting GeSn shell growth. However, the uniformity of tin incorporation during reduced pressure chemical vapor deposition may be limited by the kinetics of mass transfer to the shell during GeSn growth. The balance between Sn precursor flux and available surfaces for GeSn nucleation and growth determines whether defects are formed and their type. On the one hand, when the Sn precursor delivery is insufficient, local variations in Sn arrival rate at the nanowire surfaces during GeSn growth produce asymmetries in shell growth that induce wire bending. This inhomogeneous elastic dilatation due to the varying composition occurs via deposition of Sn-poor regions on some of the {112} sidewall facets of the nanowires. On the other hand, when the available nanowire surface area is insufficient to accommodate the arriving Sn precursor flux, Sn-rich precipitate formation results. Between these two extremes, there exists a regime of growth conditions and nanowire densities that permits defect-free GeSn shell growth.

11.
Nanoscale ; 13(26): 11427-11438, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34160525

ABSTRACT

Al2O3-supported Pt/Pd bimetallic catalysts were studied using in situ atmospheric pressure and ex situ transmission electron microscopy. Real-time observation during separate oxidation and reduction processes provides nanometer-scale structural details - both morphology and chemistry - of supported Pt/Pd particles at intermediate states not observable through typical ex situ experiments. Significant metal vaporization was observed at temperatures above 600 °C, both in pure oxygen and in air. This behavior implies that material transport through the vapor during typical catalyst aging processes for oxidation can play a more significant role in catalyst structural evolution than previously thought. Concomitantly, Pd diffusion away from metallic nanoparticles on the surface of Al2O3 can also contribute to the disappearance of metal particles. Electron micrographs from in situ oxidation experiments were mined for data, including particle number, size, and aspect ratio using machine learning image segmentation. Under oxidizing conditions, we observe not only a decrease in the number of metal particles but also a decrease in the surface area to volume ratio. Some of the metal that diffuses away from particles on the oxide support can be regenerated and reappears back on the catalyst support surface under reducing conditions. These observations provide insight on how rapid cycling between oxidative and reductive catalytic operating conditions affects catalyst structure.

12.
ACS Nano ; 15(6): 10228-10240, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34003639

ABSTRACT

Liquid-cell scanning/transmission electron microscopy (S/TEM) has impacted our understanding of multiple areas of science, most notably nanostructure nucleation and growth and electrochemistry and corrosion. In the case of electrochemistry, the incorporation of electrodes requires the use of silicon nitride membranes to confine the liquid. The combined thickness of the liquid layer and the confining membranes prevents routine atomic-resolution characterization. Here, we show that by performing electrochemical water splitting in situ to generate a gas bubble, we can reduce the thickness of the liquid to a film approximately 30 nm thick that remains covering the sample. The reduced thickness of the liquid allows the acquisition of atomic-scale S/TEM images with chemical and valence analysis through electron energy loss spectroscopy (EELS) and structural analysis through selected area electron diffraction (SAED). This contrasts with a specimen cell entirely filled with liquid, where the broad plasmon peak from the liquid obscures the EELS signal from the sample and induces beam incoherence that impedes SAED analysis. The gas bubble generation is fully reversible, which allows alternating between a full cell and thin-film condition to obtain optimal experimental and analytical conditions, respectively. The methodology developed here can be applied to other scientific techniques, such as X-ray scattering, Raman spectroscopy, and X-ray photoelectron spectroscopy, allowing for a multi-modal, nanoscale understanding of solid-state samples in liquid media.

13.
ACS Appl Mater Interfaces ; 13(11): 13097-13105, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33715346

ABSTRACT

The performance of metal-air batteries and fuel cells depends on the speed and efficiency of electrochemical oxygen reduction reactions at the cathode, which can be improved by engineering the atomic arrangement of cathode catalysts. It is, however, difficult to improve upon the performance of platinum nanoparticles in alkaline electrolytes with low-loading catalysts that can be manufactured at scale. Here, the authors synthesized nanoporous gold catalysts with increased (100) surface facets using electrochemical dealloying in sodium citrate surfactant electrolytes. These modified nanoporous gold catalysts achieved an 8% higher operating voltage and 30% greater power density in aluminum-air batteries over traditionally prepared nanoporous gold, and their performance was superior to commercial platinum nanoparticle electrodes at a 10 times lower mass loading. The authors used rotation disc electrode studies, backscattering of electrons, and underpotential deposition to show that the increased (100) facets improved the catalytic activity of citrate dealloyed nanoporous gold compared to conventional nanoporous gold. The citrate dealloyed samples also had the highest stability and least concentration of steps and kinks. The developed synthesis and characterization techniques will enable the design and synthesis of metal nanostructured catalysts with controlled facets for low-cost and mass production of metal-air battery cathodes.

14.
Nanoscale ; 11(45): 21974-21980, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31709446

ABSTRACT

Core-shell Ge/Ge1-xSnx nanowires are considered promising silicon-compatible nanomaterials with the potential to achieve a direct band-gap for optoelectronic applications. In this study, we systematically investigated the formation of this heterostructure in the radial direction by the phase field method coupled with elasticity. Our model simulated the shell growth of the wire, capturing the evolution of both the sidewall morphology and the strain distribution. We predicted the minimum chemical potential driving forces required for initiating the Ge1-xSnx shell growth at given tin concentrations. In addition, we studied the dependences of the shell growth rate on the chemical potential, the tin concentration, the sidewall interface kinetics and the mass transport rate respectively. From these analyses, we identified three sequential stages of the growth: the Stage 1 growth at an accelerated rate, the Stage 2 growth at a constant rate, and finally the Stage 3 growth at a reduced rate scaling with . This research improves our current understanding on the growth mechanisms of heterogeneous core-shell nanowires, and provides useful guidelines for optimizing nanowire synthesis pathways.

15.
ACS Appl Mater Interfaces ; 10(6): 5485-5491, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29328620

ABSTRACT

We study the thermal stability in air of the mixed cation organic-inorganic lead halide perovskites Cs0.17FA0.83Pb(I0.83Br0.17)3 and Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3. For the latter compound, containing both MA+ and FA+ ions, thermal decomposition of the perovskite phase was observed to occur in two stages. The first stage of decomposition occurs at a faster rate compared to the second stage and is only observed at relatively low temperatures (T < 150 °C). For the second stage, we find that both decomposition rate and the activation energy have similar values for Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 and Cs0.17FA0.83Pb(I0.83Br0.17)3, which suggests that the first stage mainly involves reaction of MA+ and the second stage mainly FA+.

16.
ACS Appl Mater Interfaces ; 10(6): 5140-5146, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29369616

ABSTRACT

Layered atomic-layer-deposited and forming-gas-annealed TiO2/Al2O3 dielectric stacks, with the Al2O3 layer interposed between the TiO2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO2/Al2O3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO2/Al2O3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of AlTi and TiAl point-defect dipoles produced by local intermixing of the Al2O3/TiO2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.

17.
ACS Appl Mater Interfaces ; 9(48): 41863-41870, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29124928

ABSTRACT

In this paper, the integration of metal oxides as carrier-selective contacts for ultrathin crystalline silicon (c-Si) solar cells is demonstrated which results in an ∼13% relative improvement in efficiency. The improvement in efficiency originates from the suppression of the contact recombination current due to the band offset asymmetry of these oxides with Si. First, an ultrathin c-Si solar cell having a total thickness of 2 µm is shown to have >10% efficiency without any light-trapping scheme. This is achieved by the integration of nickel oxide (NiOx) as a hole-selective contact interlayer material, which has a low valence band offset and high conduction band offset with Si. Second, we show a champion cell efficiency of 10.8% with the additional integration of titanium oxide (TiOx), a well-known material for an electron-selective contact interlayer. Key parameters including Voc and Jsc also show different degrees of enhancement if single (NiOx only) or double (both NiOx and TiOx) carrier-selective contacts are integrated. The fabrication process for TiOx and NiOx layer integration is scalable and shows good compatibility with the device.

18.
Nanotechnology ; 28(41): 415704, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28776501

ABSTRACT

The performance of nanostructured semiconductors is frequently limited by interface defects that trap electronic carriers. In particular, high aspect ratio geometries dramatically increase the difficulty of using typical solid-state electrical measurements (multifrequency capacitance- and conductance-voltage testing) to quantify interface trap densities (D it). We report on electrochemical impedance spectroscopy (EIS) to characterize the energy distribution of interface traps at metal oxide/semiconductor interfaces. This method takes advantage of liquid electrolytes, which provide conformal electrical contacts. Planar Al2O3/p-Si and Al2O3/p-Si0.55Ge0.45 interfaces are used to benchmark the EIS data against results obtained from standard electrical testing methods. We find that the solid state and EIS data agree very well, leading to the extraction of consistent D it energy distributions. Measurements carried out on pyramid-nanostructured p-Si obtained by KOH etching followed by deposition of a 10 nm ALD-Al2O3 demonstrate the application of EIS to trap characterization of a nanostructured dielectric/semiconductor interface. These results show the promise of this methodology to measure interface state densities for a broad range of semiconductor nanostructures such as nanowires, nanofins, and porous structures.

19.
Nano Lett ; 17(7): 4390-4399, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28604007

ABSTRACT

Resistance switching in TiO2 and many other transition metal oxide resistive random access memory materials is believed to involve the assembly and breaking of interacting oxygen vacancy filaments via the combined effects of field-driven ion migration and local electronic conduction leading to Joule heating. These complex processes are very difficult to study directly in part because the filaments form between metallic electrode layers that block their observation by most characterization techniques. By replacing the top electrode layer in a metal-insulator-metal memory structure with easily removable liquid electrolytes, either an ionic liquid (IL) with high resistance contact or a conductive aqueous electrolyte, we probe field-driven oxygen vacancy redistribution in TiO2 thin films under conditions that either suppress or promote Joule heating. Oxygen isotope exchange experiments indicate that exchange of oxygen ions between TiO2 and the IL is facile at room temperature. Oxygen loss significantly increases the conductivity of the TiO2 films; however, filament formation is not observed after IL gating alone. Replacing the IL with a more conductive aqueous electrolyte contact and biasing does produce electroformed conductive filaments, consistent with a requirement for Joule heating to enhance the vacancy concentration and mobility at specific locations in the film.

20.
ACS Appl Mater Interfaces ; 8(44): 30601-30607, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27758108

ABSTRACT

Intentional oxidation of an As2-decapped (100) In0.57Ga0.43As substrate by additional H2O dosing during initial Al2O3 gate dielectric atomic layer deposition (ALD) increases the interface trap density (Dit), lowers the band edge photoluminescence (PL) intensity, and generates Ga-oxide detected by X-ray photoelectron spectroscopy (XPS). Aberration-corrected high resolution transmission electron microscopy (TEM) reveals formation of an amorphous interfacial layer which is distinct from the Al2O3 dielectric and which is not present without the additional H2O dosing. Observation of a temperature dependent border trap response, associated with the frequency dispersion of the accumulation capacitance and conductance of metal-oxide-semiconductor (MOS) structures, is found to be correlated with the presence of this defective interfacial layer. MOS capacitors prepared with additional H2O dosing show a notable decrease (∼20%) of accumulation dispersion over 5 kHz to 500 kHz when the measurement temperature decreases from room temperature to 77 K, while capacitors prepared with an abrupt Al2O3/InGaAs interface display little change (<2%) with temperature. Similar temperature-dependent border trap response is also observed when the (100) InGaAs surface is treated with a previously reported HCl(aq) wet cleaning procedure prior to Al2O3 ALD. These results point out the sensitivity of the temperature dependence of the border trap response in metal oxide/III-V MOS gate stacks to the presence of processing-induced interface oxide layers, which alter the dynamics of carrier trapping at defects that are not located at the semiconductor interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...