Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3879, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34162878

ABSTRACT

Fluorescent type nuclear battery consisting of scintillator and photovoltaic device enables semipermanent power source for devices working under harsh circumstances without instant energy supply. In spite of the progress of device structure design, the development of scintillators is far behind. Here, a Cs3Cu2I5: Mn scintillator showing a high light yield of ~67000 ph MeV-1 at 564 nm is presented. Doping and intrinsic features endow Cs3Cu2I5: Mn with robust thermal stability and irradiation hardness that 71% or >95% of the initial radioluminescence intensity can be maintained in an ultra-broad temperature range of 77 K-433 K or after a total irradiation dose of 2590 Gy, respectively. These superiorities allow the fabrication of efficient and stable nuclear batteries, which show an output improvement of 237% respect to the photovoltaic device without scintillator. Luminescence mechanisms including self-trapped exciton, energy transfer, and impact excitation are proposed for the anomalous dramatic radioluminescence improvement. This work will open a window for the fields of nuclear battery and radiography.

2.
Adv Mater ; 31(30): e1900767, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31172615

ABSTRACT

The stability and optoelectronic device performance of perovskite quantum dots (Pe-QDs) are severely limited by present ligand strategies since these ligands exhibit a highly dynamic binding state, resulting in serious complications in QD purification and storage. Here, a "Br-equivalent" ligand strategy is developed in which the proposed strong ionic sulfonate heads, for example, benzenesulfonic acid, can firmly bind to the exposed Pb ions to form a steady binding state, and can also effectively eliminate the exciton trapping probability due to bromide vacancies. From these two aspects, the sulfonate heads play a similar role as natural Br ions in a perfect perovskite lattice. Using this approach, high photoluminescence quantum yield (PL QY) > 90% is facilely achieved without the need for amine-related ligands. Furthermore, the prepared PL QYs are well maintained after eight purification cycles, more than five months of storage, and high-flux photo-irradiation. This is the first report of high and versatile stabilities of Pe-QD, which should enable their improved application in lighting, displays, and biologic imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...