Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 406, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724906

ABSTRACT

Most proteins exert their functions by interacting with other proteins, making the identification of protein-protein interactions (PPI) crucial for understanding biological activities, pathological mechanisms, and clinical therapies. Developing effective and reliable computational methods for predicting PPI can significantly reduce the time-consuming and labor-intensive associated traditional biological experiments. However, accurately identifying the specific categories of protein-protein interactions and improving the prediction accuracy of the computational methods remain dual challenges. To tackle these challenges, we proposed a novel graph neural network method called GNNGL-PPI for multi-category prediction of PPI based on global graphs and local subgraphs. GNNGL-PPI consisted of two main components: using Graph Isomorphism Network (GIN) to extract global graph features from PPI network graph, and employing GIN As Kernel (GIN-AK) to extract local subgraph features from the subgraphs of protein vertices. Additionally, considering the imbalanced distribution of samples in each category within the benchmark datasets, we introduced an Asymmetric Loss (ASL) function to further enhance the predictive performance of the method. Through evaluations on six benchmark test sets formed by three different dataset partitioning algorithms (Random, BFS, DFS), GNNGL-PPI outperformed the state-of-the-art multi-category prediction methods of PPI, as measured by the comprehensive performance evaluation metric F1-measure. Furthermore, interpretability analysis confirmed the effectiveness of GNNGL-PPI as a reliable multi-category prediction method for predicting protein-protein interactions.


Subject(s)
Algorithms , Computational Biology , Neural Networks, Computer , Protein Interaction Mapping , Protein Interaction Mapping/methods , Computational Biology/methods , Protein Interaction Maps , Humans , Proteins/metabolism
2.
J Chem Inf Model ; 64(7): 2878-2888, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-37610162

ABSTRACT

The prediction of the drug-target affinity (DTA) plays an important role in evaluating molecular druggability. Although deep learning-based models for DTA prediction have been extensively attempted, there are rare reports on multimodal models that leverage various fusion strategies to exploit heterogeneous information from multiple different modalities of drugs and targets. In this study, we proposed a multimodal deep model named MMDTA, which integrated the heterogeneous information from various modalities of drugs and targets using a hybrid fusion strategy to enhance DTA prediction. To achieve this, MMDTA first employed convolutional neural networks (CNNs) and graph convolutional networks (GCNs) to extract diverse heterogeneous information from the sequences and structures of drugs and targets. It then utilized a hybrid fusion strategy to combine and complement the extracted heterogeneous information, resulting in the fused modal information for predicting drug-target affinity through the fully connected (FC) layers. Experimental results demonstrated that MMDTA outperformed the competitive state-of-the-art deep learning models on the widely used benchmark data sets, particularly with a significantly improved key evaluation metric, Root Mean Square Error (RMSE). Furthermore, MMDTA exhibited excellent generalization and practical application performance on multiple different data sets. These findings highlighted MMDTA's accuracy and reliability in predicting the drug-target binding affinity. For researchers interested in the source data and code, they are accessible at http://github.com/dldxzx/MMDTA.


Subject(s)
Benchmarking , Drug Delivery Systems , Humans , Reproducibility of Results , Neural Networks, Computer , Research Personnel
3.
Comput Biol Med ; 168: 107683, 2024 01.
Article in English | MEDLINE | ID: mdl-37984202

ABSTRACT

Accurately pinpointing protein-protein interaction site (PPIS) on the molecular level is of utmost significance for annotating protein function and comprehending the mechanisms underpinning various diseases. While numerous computational methods for predicting PPIS have emerged, they have indeed mitigated the labor and time constraints associated with traditional experimental methods. However, the predictive accuracy of these methods has yet to reach the desired threshold. In this context, we proposed a groundbreaking graph-based computational model called GHGPR-PPIS. This innovative model leveraged a graph convolutional network using heat kernel (GraphHeat) in conjunction with Generalized PageRank techniques (GHGPR) to predict PPIS. Additionally, building upon the GHGPR framework, we devised an edge self-attention feature processing block, further augmenting the performance of the model. Experimental findings conclusively demonstrated that GHGPR-PPIS surpassed all competing state-of-the-art models when evaluated on the benchmark test set. Impressively, on two distinct independent test sets and a specific protein chain, GHGPR-PPIS consistently demonstrated superior generalization performance and practical applicability compared to the comparative model, AGAT-PPIS. Lastly, leveraging the t-SNE dimensionality reduction algorithm and clustering visualization technique, we delved into an interpretability analysis of the effectiveness of GHGPR-PPIS by meticulously comparing the outputs from different stages of the model.


Subject(s)
Protein Interaction Mapping , Proton Pump Inhibitors , Protein Interaction Mapping/methods , Hot Temperature , Algorithms , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...