Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Technol Cancer Res Treat ; 23: 15330338241254075, 2024.
Article in English | MEDLINE | ID: mdl-38720626

ABSTRACT

Objective: Since the update of the 2018 International Federation of Gynecology and Obstetrics (FIGO) staging criteria, there have been few reports on the prognosis of stage III C cervical cancer. Moreover, some studies have drawn controversial conclusions, necessitating further verification. This study aims to evaluate the clinical outcomes and determine the prognostic factors for stage III C cervical cancer patients treated with radical radiotherapy or radiochemotherapy. Methods: The data of 117 stage III C cervical cancer patients (98 III C1 and 19 III C2) who underwent radical radiotherapy or radiochemotherapy were retrospectively analyzed. We evaluated 3-year overall survival (OS) and disease-free survival (DFS) using the Kaplan-Meier method. Prognostic factors were analyzed using the Log-rank test and Cox proportional hazard regression model. The risk of para-aortic lymph node metastasis (LNM) in all patients was assessed through Chi-squared test and logistic regression analysis. Results: For stage III C1 and III C2 patients, the 3-year OS rates were 77.6% and 63.2% (P = .042), and the 3-year DFS rates were 70.4% and 47.4% (P = .003), respectively. The pretreatment location of pelvic LNM, histological type, and FIGO stage was associated with OS (P = .033, .003, .042, respectively); the number of pelvic LNM and FIGO stage were associated with DFS (P = .015, .003, respectively). The histological type was an independent prognostic indicator for OS, and the numbers of pelvic LNM and FIGO stage were independent prognostic indicators for DFS. Furthermore, a pelvic LNM largest short-axis diameter ≥ 1.5 cm and the presence of common iliac LNM were identified as high-risk factors influencing para-aortic LNM in stage III C patients (P = .046, .006, respectively). Conclusions: The results of this study validated the 2018 FIGO staging criteria for stage III C cervical cancer patients undergoing concurrent chemoradiotherapy. These findings may enhance our understanding of the updated staging criteria and contribute to better management of patients in stage III C.


Subject(s)
Chemoradiotherapy , Neoplasm Staging , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/mortality , Female , Middle Aged , Prognosis , Adult , Aged , Retrospective Studies , Lymphatic Metastasis , Kaplan-Meier Estimate , Treatment Outcome , Proportional Hazards Models , Survival Rate
2.
J Org Chem ; 89(10): 6694-6703, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38695196

ABSTRACT

An excellent compatible and cost-effective dynamic kinetic resolution (DKR) protocol has been developed by combining a novel immobilized oxovanadium racemization catalyst onto cheap diatomite (V-D) with an immobilized lipase LA resolution catalyst onto a macroporous resin (LA-MR). V-D was prepared via grinding immobilization, which may become a promising alternative for the immobilization of metals, especially precious metals due to its low cost, high efficiency, easy separation, and large reaction interface. The DKR afforded high yield (96.1%), e.e. (98.67%), and Sel (98.28%) under optimal conditions established using response surface methodology as follows: the amount of V-D 10.83 mg, reaction time 51.2 h, and temperature 48.1 °C, respectively, indicating that all the reactions in the DKR were coordinated very well. The DKR protocol was also found to have high stability up to six reuses. V-D exhibited excellent compatibility with LA-MR because the lipase immobilized onto MR did not physically contact with the vanadium species immobilized onto diatomite, thus avoiding inactivation. Considering that lipase, oxovanadium, diatomite, and MR used are relatively inexpensive, and the adsorption or grinding immobilization is simple, the LA-V-MD DKR by coupling LA-MR with V-D is a cost-effective and promising protocol for chiral secondary alcohols.

3.
iScience ; 27(5): 109627, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38638565

ABSTRACT

The quantum denoising technology efficiently removes noise from images; however, the existing algorithms are only effective for additive noise and cannot remove multiplicative noise, such as speckle noise in synthetic aperture radar (SAR) images. In this paper, based on the grayscale morphology method, a quantum SAR image denoising algorithm is proposed, which performs morphological operations on all pixels simultaneously to remove the noise in the SAR image. In addition, we design a feasible quantum adder to perform cyclic shift operations. Then, quantum circuits for dilation and erosion are designed, and the complete quantum circuit is then constructed. For a 2n×2n quantum SAR image with q grayscale levels, the complexity of our algorithm is O (n+q). Compared with classical algorithms, it achieves exponential improvement and also has polynomial-level improvements than existing quantum algorithms. Finally, the feasibility of our algorithm is validated on IBM Q.

4.
Proc Natl Acad Sci U S A ; 121(19): e2318652121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687781

ABSTRACT

Water oxidation on magnetic catalysts has generated significant interest due to the spin-polarization effect. Recent studies have revealed that the disappearance of magnetic domain wall upon magnetization is responsible for the observed oxygen evolution reaction (OER) enhancement. However, an atomic picture of the reaction pathway remains unclear, i.e., which reaction pathway benefits most from spin-polarization, the adsorbent evolution mechanism, the intermolecular mechanism (I2M), the lattice oxygen-mediated one, or more? Here, using three model catalysts with distinguished atomic chemistries of active sites, we are able to reveal the atomic-level mechanism. We found that spin-polarized OER mainly occurs at interconnected active sites, which favors direct coupling of neighboring ligand oxygens (I2M). Furthermore, our study reveals the crucial role of lattice oxygen participation in spin-polarized OER, significantly facilitating the coupling kinetics of neighboring oxygen radicals at active sites.

5.
Nat Commun ; 15(1): 1095, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321031

ABSTRACT

Electrochemical synthesis is a promising way for sustainable urea production, yet the exact mechanism has not been fully revealed. Herein, we explore the mechanism of electrochemical coupling of nitrite and carbon dioxide on Cu surfaces towards urea synthesis on the basis of a constant-potential method combined with an implicit solvent model. The working electrode potential, which has normally overlooked, is found influential on both the reaction mechanism and activity. The further computational study on the reaction pathways reveals that *CO-NH and *NH-CO-NH as the key intermediates. In addition, through the analysis of turnover frequencies under various potentials, pressures, and temperatures within a microkinetic model, we demonstrate that the activity increases with temperature, and the Cu(100) shows the highest efficiency towards urea synthesis among all three Cu surfaces. The electric double-layer capacitance also plays a key role in urea synthesis. Based on these findings, we propose two essential strategies to promote the efficiency of urea synthesis on Cu electrodes: increasing Cu(100) surface ratio and elevating the reaction temperature.

6.
J Hazard Mater ; 465: 133399, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38163411

ABSTRACT

The activity of single-atom catalysts in peroxymonosulfate activation process is bound up with the local electronic state of metal center. However, the large electronegativity of N atoms in Metal-N4 restricts the electron transfer between center metal atom and peroxymonosulfate. Herein, we constructed Fe-SN-C catalyst by incorporating S atom in the first coordination sphere of Fe single-atom site (Fe-S1N3) for Fenton-like catalysis. The Fe-SN-C with a low valent Fe is found to exhibit excellent catalytic activity for bisphenol A degradation, and the corresponding rate constant reaches 0.405 min-1, 11.9-fold higher than the original Fe-N-C. Besides, the Fe-SN-C/PMS system exhibits ideal catalytic stability under the effect of wide pH range and background substrates by the fast generation of high-valent Fe species. Experimental results and theoretical calculations reveal that the dual coordination of S and N atoms notably increases the local electron density of Fe atoms and electron filling in eg orbital, causing a d band center shifting close to the fermi level and thereby optimizes the activation energy for peroxymonosulfate decomposition via Fe 3d-O 2p orbital interaction. This work provides further development of promising SACs for the efficient activation of peroxymonosulfate based on direct regulation of the coordination environment of active center metal atoms.

7.
Chemosphere ; 343: 140253, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37741373

ABSTRACT

In this study, Cu hybridization coupling oxygen defect engineering was adopted to synthesis of CuNiFe layered double oxides (CuNiFe-LDOs) in peroxymonosulfate (PMS) activation for degradation of methyl 4-hydroxybenzoate. The morphology and crystal structure of CuNiFe-LDOs was characterized in detail, which exhibited regular layered-structure at a Cu:Ni doping ratio of 1:1 and annealing temperature of 400 °C, and presented the crystal of CuxO@Fe3O4-NiO. Besides, the X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) results demonstrated that abundant oxygen vacancies (OVs) and low oxidation state Cu species were composed in CuNiFe-LDOs400. The Cu1·5Ni1·5Fe1-LDOs400/PMS system showed excellent catalytic performance toward the degradation of butyl 4-hydroxybenzoate (BuP), and resistant to the effect of pH value and background inorganic anions. Based on quenching experiments and EPR measurements, singlet oxygen (1O2) was identified as the dominant active species during the heterogeneous catalytic process, which was generated by the synergistic interaction between OVs-Cu(I) site and PMS. In this process, the electron-drawing property of OVs promoted the adsorption of PMS molecule on Cu(I) site, followed by the accumulation of electron and cleavage of O-O bond to generate intermediate oxygen radical species, which donated one electron to eventually generate singlet oxygen.


Subject(s)
Oxides , Oxygen , Singlet Oxygen , Peroxides/chemistry
8.
Sci Adv ; 9(34): eadh9487, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37624888

ABSTRACT

Developing technologies based on the concept of methanol electrochemical refinery (e-refinery) is promising for carbon-neutral chemical manufacturing. However, a lack of mechanism understanding and material properties that control the methanol e-refinery catalytic performances hinders the discovery of efficient catalysts. Here, using 18O isotope-labeled catalysts, we find that the oxygen atoms in formate generated during the methanol e-refinery reaction can originate from the catalysts' lattice oxygen and the O-2p-band center levels can serve as an effective descriptor to predict the catalytic performance of the catalysts, namely, the formate production rates and Faradaic efficiencies. Moreover, the identified descriptor is consolidated by additional catalysts and theoretical mechanisms from density functional theory. This work provides direct experimental evidence of lattice oxygen participation and offers an efficient design principle for the methanol e-refinery reaction to formate, which may open up new research directions in understanding and designing electrified conversions of small molecules.

10.
Sci Rep ; 13(1): 6887, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37106057

ABSTRACT

Although numerous spatiotemporal approaches have been presented to address the problem of missing spatiotemporal data, there are still limitations in concurrently capturing the underlying spatiotemporal dependence of spatiotemporal graph data. Furthermore, most imputation methods miss the hidden dynamic connection associations that exist between graph nodes over time. To address the aforementioned spatiotemporal data imputation challenge, we present an attention-based message passing and dynamic graph convolution network (ADGCN). Specifically, this paper uses attention mechanisms to unify temporal and spatial continuity and aggregate node neighbor information in multiple directions. Furthermore, a dynamic graph convolution module is designed to capture constantly changing spatial correlations in sensors utilizing a new dynamic graph generation method with gating to transmit node information. Extensive imputation tests in the air quality and traffic flow domains were carried out on four real missing data sets. Experiments show that the ADGCN outperforms the state-of-the-art baseline.

11.
ACS Appl Mater Interfaces ; 15(14): 18125-18133, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37000642

ABSTRACT

Blue light-emittin g diodes (LEDs) are important components for perovskite electroluminescence applications, which still suffer from insufficient luminescence efficiency and poor stability. In Cl/Br mixed perovskite NCs, surficial defects cause severe light failure and ion migration, the in-depth mechanism of which is also not clear. To gain insights into these issues, we employ the ligand post-addition approach for mixed Cl/Br NCs by using octylammonium hydrobromide (OctBr) ligands, which effectively decrease surficial light loss and block ion migration pathways. The passivated CsPbCl1.5Br1.5 NCs exhibit exceptional blue emission with 95% PLQY, and the electroluminescence spectra of LEDs are located at the initial positions at the initial states. The treated NC blue devices show a negligible color shift as the voltage increases, which proves that electric-field-driven ion migration is drastically suppressed. In addition, OctBr-treated CsPbCl1.5Br1.5 and CsPbClBr2 NC LEDs show high external quantum efficiencies of 2.42 and 3.05% for emission peaks at 456 and 480 nm, respectively. Our work identified the nature of NC surface defects and provided a surficial modification approach to develop high-performance and color-stable blue mixed-halide perovskite LEDs.

12.
J. physiol. biochem ; 79(1): 19-34, feb. 2023.
Article in English | IBECS | ID: ibc-215711

ABSTRACT

Exosomes have a critical role in the intercellular communication and metastatic progression of hepatocellular carcinoma (HCC). Recently, our group showed that α2, 6-sialylation played an important role in the proliferation- and migration-promoting effects of cancer-derived exosomes. However, the molecular basis remains elusive. In this study, the mechanism of α2, 6-sialylation-mediated specific microRNAs (miRNA) sorting into exosomes was illustrated. We performed miRNA profiling analysis to compare exosomes from HCC cell lines that differ only in α2, 6-sialylation status. A total of 388 differentially distributed miRNAs were identified in wild-type and β-galactoside α2, 6-sialyltransferase I (ST6Gal-I) knockdown MHCC-97H cells-derived exosomes. Neutral sphingomyelinase-2 (nSmase2), an important regulator mediating the sorting of exosomal miRNAs, was found to be a target of ST6Gal-I. The reduction of α2, 6-sialylation could impair the activity of nSmase2, as well as the nSmase2-dependent exosomal miRNAs sorting. This α2,6-sialylation-dependent sorting exerted an augmentation of motility on recipient HCC cells. Our data further demonstrated that α2,6-sialylation-mediated sorting of exosomal miR-100-5p promoted the migration and invasion of recipient HepG2 cells via the PI3K/AKT signaling pathway. The cellular metastasis–related gene CLDN11 was confirmed as a direct target of exosomal miR-100-5p, which elevated the mobility of recipient HCC cells. In conclusion, our results showed that α2,6-sialylation modulates nSmase2-dependent exosomal miRNAs sorting and promotes HCC progression. (AU)


Subject(s)
Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , MicroRNAs/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases/metabolism
13.
J Physiol Biochem ; 79(1): 19-34, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35984620

ABSTRACT

Exosomes have a critical role in the intercellular communication and metastatic progression of hepatocellular carcinoma (HCC). Recently, our group showed that α2, 6-sialylation played an important role in the proliferation- and migration-promoting effects of cancer-derived exosomes. However, the molecular basis remains elusive. In this study, the mechanism of α2, 6-sialylation-mediated specific microRNAs (miRNA) sorting into exosomes was illustrated. We performed miRNA profiling analysis to compare exosomes from HCC cell lines that differ only in α2, 6-sialylation status. A total of 388 differentially distributed miRNAs were identified in wild-type and ß-galactoside α2, 6-sialyltransferase I (ST6Gal-I) knockdown MHCC-97H cells-derived exosomes. Neutral sphingomyelinase-2 (nSmase2), an important regulator mediating the sorting of exosomal miRNAs, was found to be a target of ST6Gal-I. The reduction of α2, 6-sialylation could impair the activity of nSmase2, as well as the nSmase2-dependent exosomal miRNAs sorting. This α2,6-sialylation-dependent sorting exerted an augmentation of motility on recipient HCC cells. Our data further demonstrated that α2,6-sialylation-mediated sorting of exosomal miR-100-5p promoted the migration and invasion of recipient HepG2 cells via the PI3K/AKT signaling pathway. The cellular metastasis-related gene CLDN11 was confirmed as a direct target of exosomal miR-100-5p, which elevated the mobility of recipient HCC cells. In conclusion, our results showed that α2,6-sialylation modulates nSmase2-dependent exosomal miRNAs sorting and promotes HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , MicroRNAs/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
14.
Micromachines (Basel) ; 13(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36557535

ABSTRACT

Endovascular surgery is a high-risk operation with limited vision and intractable guidewires. At present, endovascular surgery robot (ESR) systems based on force feedback liberates surgeons' operation skills, but it lacks the ability to combine force perception with vision. In this study, a deep learning-based guidewire-compliant control method (GCCM) is proposed, which guides the robot to avoid surgical risks and improve the efficiency of guidewire operation. First, a deep learning-based model called GCCM-net is built to identify whether the guidewire tip collides with the vascular wall in real time. The experimental results in a vascular phantom show that the best accuracy of GCCM-net is 94.86 ± 0.31%. Second, a real-time operational risk classification method named GCCM-strategy is proposed. When the surgical risks occur, the GCCM-strategy uses the result of GCCM-net as damping and decreases the robot's running speed through virtual resistance. Compared with force sensors, the robot with GCCM-strategy can alleviate the problem of force position asynchrony caused by the long and soft guidewires in real-time. Experiments run by five guidewire operators show that the GCCM-strategy can reduce the average operating force by 44.0% and shorten the average operating time by 24.6%; therefore the combination of vision and force based on deep learning plays a positive role in improving the operation efficiency in ESR.

15.
J Contemp Brachytherapy ; 14(4): 332-340, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36199952

ABSTRACT

Purpose: To evaluate the efficacy of radiotherapy in locally advanced cervical cancer, and to determine the factors affecting prognosis. Material and methods: Clinical data of 211 patients with cervical cancer, treated at our institution between June 2014 and February 2017 were reviewed retrospectively. All patients were treated with definitive radiotherapy and received external irradiation of 45-50.4 Gy. High-dose-rate brachytherapy (HDR-BT) of 24-36 Gy was prescribed to a high-risk clinical target volume (HR-CTV) as a local boost. All statistical analyses were performed with SPSS version 19.0 using Kaplan-Meier survival test and Cox regression analysis. Additionally, dose parameters of patients with IIIB stage treated with combined intracavitary/interstitial (IC/IS) implants were compared with IC only. Results: With a median follow-up time of 69 months, local control (LC), overall survival (OS), disease-free survival (DFS), and nodal control (NC) at 5 years were 89%, 78%, 67%, and 88%, respectively. In multivariate analysis, the major determinant of LC was the level of pre-treatment squamous cell carcinoma antigen (SCC-Ag). The predictors of shorter OS were adenocarcinoma, pre-treatment SCC-Ag, and FIGO stage. Worse DFS was associated with adenocarcinoma, pre-treatment SCC-Ag, and involved lymph nodes. The predictors for nodal failure were positive pelvic lymph nodes. Patients with IIIB treated with IC/IS brachytherapy tended to improve DFS compared with IC alone, and obtained similar HR-CTV D90 EQD2 (n = 10) and biological effective dose (BED), 91 ±6 Gy vs. 89 ±3 Gy, and 107 ±4.5 Gy vs. 107 ±5.6 Gy, whereas decreased organs at risk (OARs) doses, including rectum and bladder D2cm3 were 7.5 Gy and 7.2 Gy lower, respectively. Late grade 3-4 bladder and bowel toxicities were observed in 1.9% of patients. Conclusions: Radiation therapy carried out in our institution results in good survival, with acceptable toxicity in locally advanced cervical cancer. Different individualized therapeutic strategies should be considered for patients with high-risk factors.

16.
ACS Appl Mater Interfaces ; 14(27): 30735-30745, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35767248

ABSTRACT

Catalytic degradation of halogenated contaminants by palladium (Pd) is a promising technology for environmental remediation. However, the low utilization of H by Pd catalyst and its easy poisoning prevent its applications. Here, low work function elements (B or Ag) were incorporated into Fe@C-supported Pd nanoparticles (NPs) to alter their crystalline structure and induce electronic effects, addressing these issues. The Pd mass-normalized dechlorination rates of trichloroethylene (TCE) by Fe@C-Pd-B and Fe@C-Pd-Ag were 51 and 59 times higher than that of unmodified Fe@C-Pd, respectively. The H utilization efficiency of Fe@C-Pd-B and Fe@C-Pd-Ag was 5.4 and 7.2 times higher than that of unmodified Fe@C-Pd, respectively. Various characterizations suggest that the B or Ag incorporation induced the charge redistribution and elevated the electron density of Pd atoms, resulting in the enhanced formic acid (FA) dehydrogenation and TCE dechlorination. Although the Ag incorporation presented a relatively higher H utilization due to the suppressed combination of H and accumulation of unsaturated hydrocarbons (i.e., C2H4), the Fe@C-Pd-Ag was easily deactivated. In contrast, the B incorporation enabled the Pd NPs with a good stability. These findings can guide the rational design of robust Pd-based catalysts for efficient and selective FA dehydrogenation and chlorinated contaminant degradation.

17.
Micromachines (Basel) ; 13(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35630237

ABSTRACT

Vascular interventional surgery is a typical method for diagnosing and treating cardio-cerebrovascular diseases. However, a surgeon is exposed to significant X-radiation exposure when the operation is conducted for a long period of time. A vascular intervention surgical robotic system for assisting the surgeon is a promising approach to address the aforementioned issue. When developing the robotic system, a high displacement accuracy is crucial, and this can aid in enhancing operating efficiency and safety. In this study, a novel kinetics analysis and active disturbance rejection control (ADRC)-based controller is proposed to provide high accuracy for a string-driven robotic system. In this controller, kinetics analysis is initially used to improve the accuracy affected by the inner factors of the slave manipulator. Then, the ADRC controller is used to further improve the operating accuracy of the robotic system. Finally, the proposed controller is evaluated by conducting experiments on a vascular model. The results indicate maximum steady errors of 0.45 mm and 6.67°. The experimental results demonstrate that the proposed controller can satisfy the safety requirements of the string-driven robotic system.

18.
Anal Cell Pathol (Amst) ; 2022: 9675466, 2022.
Article in English | MEDLINE | ID: mdl-35498155

ABSTRACT

Cervical cancer (CC) is among the most prevalent cancers among female populations with high recurrence rates all over the world. Cisplatin (DDP) is the first-line treatment for multiple cancers, including CC. The main problem associated with its clinical application is drug resistance. This study is aimed at investigating the function and downstream regulation mechanism of forkhead-box A1 (FOXA1) in CC, which was verified as an oncogene in several cancers. Using GEO database and bioinformatics analysis, we identified FOXA1 as a possible oncogene in CC. Silencing of FOXA1 inhibited CC cell growth, invasion, and chemoresistance. Afterwards, the downstream gene of FOXA1 was predicted using a bioinformatics website and validated using ChIP and dual-luciferase assays. SIX4, a possible target of FOXA1, promoted CC cell malignant aggressiveness and chemoresistance. In addition, overexpression of SIX4 promoted phosphorylation of PI3K and AKT proteins and activated the PI3K/AKT signaling pathway. Further overexpression of SIX4 reversed the repressive effects of FOXA1 knockdown on CC cell growth, invasion, and chemoresistance in DDP-resistant cells. FOXA1-induced SIX4 facilitates CC progression and chemoresistance, highlighting a strong potential for FOXA1 to serve as a promising therapeutic target in CC.


Subject(s)
Uterine Cervical Neoplasms , Cell Transformation, Neoplastic , Drug Resistance, Neoplasm/genetics , Female , Hepatocyte Nuclear Factor 3-alpha/genetics , Homeodomain Proteins , Humans , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Trans-Activators , Uterine Cervical Neoplasms/genetics
19.
Natl Sci Rev ; 9(5): nwab098, 2022 May.
Article in English | MEDLINE | ID: mdl-35591910

ABSTRACT

Two-dimensional (2D) indium selenide (InSe) has been widely studied for application in transistors and photodetectors, which benefit from its excellent optoelectronic properties. Among the three specific polytypes (γ-, ϵ- and ß-phase) of InSe, only the crystal lattice of InSe in ß-phase (ß-InSe) belongs to a non-symmetry point group of [Formula: see text], which indicates stronger anisotropic transport behavior and potential in the polarized photodetection of ß-InSe-based optoelectronic devices. Therefore, we prepare the stable p-type 2D-layered ß-InSe via temperature gradient method. The anisotropic Raman, transport and photoresponse properties of ß-InSe have been experimentally and theoretically proven, showing that the ß-InSe-based device has a ratio of 3.76 for the maximum to minimum dark current at two orthogonal orientations and a high photocurrent anisotropic ratio of 0.70 at 1 V bias voltage, respectively. The appealing anisotropic properties demonstrated in this work clearly identify ß-InSe as a competitive candidate for filter-free polarization-sensitive photodetectors.

20.
ACS Appl Mater Interfaces ; 14(12): 14293-14301, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35290023

ABSTRACT

Glycerol is a byproduct of biodiesel production and can be a low-cost source for some high-value C1-C3 chemicals. The conversion can be achieved by photo-, thermo-, and electro-catalysis methods. The electrocatalytic oxidation method is attractive due to its moderate reaction conditions and high electron to product efficiency. Most reported catalysts are based on noble metals, while metal oxides are rarely reported. Here, we investigated the electro-oxidation of glycerol on a series of ZnFexCo2-xO4 (x = 0, 0.4, 1.0, 1.4, and 2.0) spinel oxides. Seven types of value-added C1-C3 products including formate, glycolate, lactate, and glycerate can be obtained by this approach. The selectivity and Faraday efficiency toward these products can be tuned by adjusting the Fe/Co ratio and other experimental parameters, such as the applied potential, glycerol concentration, and electrolyte pH.

SELECTION OF CITATIONS
SEARCH DETAIL
...