Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
RSC Adv ; 12(53): 34145-34153, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36545581

ABSTRACT

Alcoholysis of ball-milled biomass over catalysts with Brønsted and Lewis acid sites provides an efficient and sustainable scheme to produce versatile biobased chemicals under mild conditions; however, optimizing the process parameters is challenged by the complexity of reaction pathways and the multiplicity of ball milling and combination catalyst gains. To address these challenges, we present kinetic analysis of ethyl levulinate (EL) production from ball-milled corn stover catalyzed by Brønsted (B) acidic ionic liquid [Bmim-SO3H][HSO4] (SO3H-IL) and Lewis (L) acidic Al2(SO4)3. Product analysis shows that cellulosic substrates can form EL either through the intermediate ethyl-d-glycopyranoside (EDGP) or levoglucosenone (LGO), with the former leading the alcoholysis reaction. Kinetics results reveal that ball milling accelerates the reaction rate by promoting the formation of EDGP and LGO from cellulose. Pure SO3H-IL gives high selectivity towards EDGP from ball-milled corn stover and promotes the LGO production, whereas addition of Al2(SO4)3 substantially facilitates their further conversion to EL. Our findings contribute to the rational design of efficient catalytic strategies for sustainable and profitable biorefinery.

2.
Bioresour Technol ; 344(Pt A): 126236, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34737163

ABSTRACT

Composting is an effective way to treat agricultural waste, whereas inappropriate initial conditions could cause lower maturity and system instability. In this study, the dissolved organic matter dynamics and microbial community succession of cattle-manure composting were investigated under different initial moisture content (MC) and pH of raw material. The results indicated that the extended duration of thermophilic phase and the highest GI (germination index) value of final product were observed at matrix 60% MC and pH 8.5 (AT2 treatment). Microbial analysis showed that the succession of bacterial and fungal community was significantly influenced by total carbon (TN), pH and MC (P < 0.05). The relationship between microbial community and fluorescence regional integration (FRI) parameters demonstrated that Thermobifida (bacterial genus), Mycothermus and Thermomyces (fungal genera) were positively correlated with PV, n (the integral aera of Region V). This study could provide a potential strategy for large-scale industrial application of compost.


Subject(s)
Composting , Animals , Cattle , Dissolved Organic Matter , Hydrogen-Ion Concentration , Manure , Soil
3.
Chemosphere ; 287(Pt 2): 132116, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34492419

ABSTRACT

Biochar application as a soil amendment has attracted worldwide attention. Nevertheless, polycyclic aromatic hydrocarbons (PAHs) formed during biochar production might enter into ecosystems and threaten human health after application to soil. Continuous pyrolysis systems tend to cause an accumulation of PAHs in biochar owing to short residence time and rapid cooling. This study conducted a comprehensive assessment regarding potential risk of PAHs in biochars produced by a continuous pyrolysis system based on bioavailability, leaching behavior, toxic equivalent quantity, health risk and phytotoxicity of PAHs. Results showed that the concentrations of total PAHs in biochars were in the range of 93.40-172.40 mg/kg, exceeding the European Biochar Certificate standard. 3-rings PAHs were the predominant groups. The percentages of total freely dissolved and leachable PAHs were lower than 1%. RH contained the least bioavailable and leachable PAHs concentration and phytotoxicity compared with CS and PS, which might attribute to the characteristic of three biochars. CS and PS were acidic and exhibited high levels of DOC and VFAs, while RH was strongly alkaline and presented greater aromaticity and higher surface area, which might have resulted in high adsorptive capacity and decreased bioavailability of PAHs. When the biochar application rate was higher than 0.6 t/ha, the incremental lifetime cancer risk value for human exposure to biochar-borne PAHs through the biochar-amended soil was over 10-6, suggesting carcinogenic risks. Germination index values of biochars ranged from 25.66 to 88.95%. Phytotoxicity mainly was caused by bioavailable PAHs and dissolved organic compounds. Overall, these findings highlighted that although the percentage of bioavailable PAHs was low, the potential health risk and phytotoxicity of PAHs in biochars produced by a continuous pyrolysis system was of a great concern. High biochar application rates should be avoided without processing both for soil safety and human health.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biological Availability , Charcoal , Ecosystem , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Pyrolysis , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
4.
Huan Jing Ke Xue ; 42(9): 4441-4451, 2021 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-34414744

ABSTRACT

Heavy metals in farmland soil are one of the most hazardous pollutants in the environment, owing to their universality and irreversibility. Modified biochar has been widely used in the adsorption and immobilization of heavy metals in soil, and its applicability is mainly determined by the types of heavy metals, pollution levels, and soil environmental conditions. Soil pollution is gradually becoming more complex and diversified, and heavy metal pollutants mostly occur in the form of compound pollution. However, most studies have focused on single heavy metal pollutant or the addition of heavy metal to soil. This study used rice straw as a raw material to prepare biochar, and modified it with K3PO4, KMnO4, and NaOH. The physicochemical and structural characteristics of the modified biochars were detected using a BET accelerated surface area and porosimetry system, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and the biochars were then analyzed for the availability and forms of Cd and Cu in soils contaminated with heavy metals in the mining area. The results showed that the surface roughness of the modified biochar increased to different degrees with increases in specific surface area and pore volume, with the NaOH modified biochar showing the most significant increases from 4.96 m2·g-1 to 60.79 m2·g-1, and from 0.02 cm3·g-1 to 0.12 cm3·g-1, respectively. The pore diameter changed in the opposite direction. The absorption peaks of the functional groups of the modified biochar were all changed, with K3PO4 modified biochar exhibiting the greatest degree of change. The addition of biochar significantly improved the soil pH value (P<0.05), and the pH value of the soil treated with K3PO4 modified biochar exhibited the largest increase. With an application of 20.5% K3PO4 modified biochar, the availability of Cu and Cd in the soil was significantly reduced, by 75.44% and 67.70%, respectively. The immobilization efficiency of Cu was much higher than that of Cd. The best immobilization efficiency of Cu and Cd in soil was achieved with K3PO4 modified biochar. With an addition of 2% K3PO4 modified biochar, the immobilization efficiency of Cu and Cd was 61.06% and 4.12%, respectively. In summary, K3PO4 modified biochar had a better immobilization effect on both Cu and Cd in compound contaminated soil.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Cadmium , Charcoal , Environmental Pollution/prevention & control , Farms , Soil , Soil Pollutants/analysis , Spectroscopy, Fourier Transform Infrared
5.
Bioresour Technol ; 304: 122928, 2020 May.
Article in English | MEDLINE | ID: mdl-32106020

ABSTRACT

In order to explore changes in microbial enzyme activity and bacterial community, a 60-day composting experiment was conducted using cattle manure and straw under aeration rates of 0.45, 0.68, and 0.90 L min-1 kg-1 fresh weight. High aeration rate increased the cellulase, urease, alkaline and acid phosphatase activities, but decreased that of invertase and catalase. Cellulase, alkaline phosphatase and catalase were the main enzymes that affected the composting process. Microbial analysis showed that high aeration rate increased the uniformity of bacterial community in thermophilic phase, but decreased that in mature phase. Different aeration rate affected the bacterial community structure and further influenced the relationship between enzyme and functional bacteria. Regulating the temperature, moisture content and EC in specific phases to affect bacterial community succession could provide guidance for improving maturity of composting.


Subject(s)
Cellulase , Composting , Animals , Bacteria , Cattle , Manure , Soil , Temperature
6.
Bioresour Technol ; 291: 121752, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31330494

ABSTRACT

Intensive and unregulated use of feed additives in China has led to high levels of heavy metals such as copper and zinc in fertilizers, considerable quantities of which find their way into the environment. Studies have shown that composting could significantly decrease the bioavailability of heavy metals. This study was to investigate the effects of addition of biochar and a microbial agent on the morphological changes in copper and zinc during composting. Results show that treatment T8 successfully immobilized 70.36% of copper as a result of biochar addition. Treatment T3 successfully immobilized 40.76% of zinc; transformation of zinc to a higher stable state was found to be closely related to the formation of fulvic and humic acids. Results of fluorescence spectrum analysis also corroborate that the conversion of copper and zinc to forms with higher stability was associated with the formation of fulvic and humic acid-like substances.


Subject(s)
Charcoal/metabolism , Composting , Copper/metabolism , Manure/microbiology , Zinc/metabolism , Animals , Swine
8.
Environ Sci Process Impacts ; 21(3): 575-583, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30758007

ABSTRACT

The considerable spatial and temporal variabilities of nitrogen (N) processing introduce large uncertainties for quantifying N cycles on a large scale, particularly in plain river network regions with complicated hydrographic connections and mixed multiple N sources. In this paper, the dual isotopes δ15N and δ18O and dissolved anions in regularly collected samples (n = 10) from the studied river, which is one of the most seriously polluted rivers in the plain river network regions of the Taihu Lake catchment, were analyzed to ascertain the main nitrate (NO3-) sources and watershed N processing in the context of monsoon climate. The seasonal variations in precipitation, temperature, and hydrology play key roles in the regulation of the river NO3- concentration, NO3- sources, and watershed N processing. Nitrification of N-containing materials in the soil was possibly the major source of NO3- all year round, especially in the rainy season, whereas manure and sewage significantly contributed to the NO3- load in the Taige River in the dry season. Nitrification and denitrification processes within the area were closely related. The significant negative relationship between the water temperature and δ18O-NO3- values indicated the occurrence of nitrification in the soil throughout the year. By contrast, seasonal variations of denitrification were apparent from May to July with the high soil temperature and moisture, thereby indicating the occurrence of denitrification (22.9%) within the watershed. After the assessment of temporal variations of NO3- sources and watershed N processing, improved environmental management practices can be implemented to protect water resources and prevent further water quality deterioration in human-impacted watersheds.


Subject(s)
Environmental Monitoring/methods , Nitrates/analysis , Nitrogen Cycle , Rivers/chemistry , Water Pollutants, Chemical/analysis , China , Denitrification , Humans , Hydrology , Lakes/chemistry , Nitrification , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis , Seasons , Soil/chemistry
9.
Bioresour Technol ; 273: 439-445, 2019 02.
Article in English | MEDLINE | ID: mdl-30466022

ABSTRACT

This work studied the influence of pyrolysis temperature on the energy and mass balance of pyrolysis of rice husk (RH), cotton stalk (CS) and fruit branch (FB) in a pilot-scale biomass pyrolytic poly-generation plant. The paper presents energy balance and self-sufficiency assessment of pilot-scale pyrolysis plant processing different types of biomass. The results also include characterization of the pyrolysis products. The volatile matter varied from 6.5 to 25.8% at different temperatures for the three feed stocks, which can be used as indexes for the degree of carbonization of biochar. The yield of pyrolysis gases enriched with H2, CH4 and other alkanes, and olefins increased significantly with increasing pyrolysis temperature from 550 to 650 °C. With a lower heating value >17.1 MJ/m3, an energy self-sufficient system is possible using only the pyrolysis gas. Biomass pyrolytic poly-generation technology offers a promising means of converting abundant agricultural residues into energy and added-value products.


Subject(s)
Biomass , Agriculture , Charcoal/chemistry , Gases/chemistry , Hot Temperature , Oryza/chemistry , Temperature
10.
Bioresour Technol ; 258: 279-286, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29544101

ABSTRACT

In this study, two different biochars (sawdust charcoal (SDC) and wheat straw charcoal (WSC)) and biological humic acid (BHA) were used with different addition rates in pig manure composting to illustrate the effect on heavy metals passivation. And the composts were applied to rape (Brassica campestris L.) growth to illustrate the stability of the passivation. Results showed the concentration of Cu, Cd, and Pb increased after composting, whereas the passivation rates of Cu, Pb, and Cd reached a maximum of 94.98%, 65.55%, and 68.78%, respectively. When the composts were applied to rape growth, the exchangeable fraction of Cu, Pb, and Cd in the soil further decreased and reduced the accumulation of heavy metals in the rape plant. The rape yield increased by 19.39%-34.35%. The optimal addition ratios of the three passivators were SDC 5%, WSC 7.5% and BHA 2.5% to reduce the health risk of heavy metals in rape products.


Subject(s)
Cadmium , Charcoal , Composting , Copper , Lead , Animals , Humic Substances , Manure , Metals, Heavy , Soil , Soil Pollutants
11.
Waste Manag Res ; 34(6): 578-83, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27067429

ABSTRACT

Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days.


Subject(s)
Copper/analysis , Lead/analysis , Manure , Medical Waste Disposal/methods , Soil/chemistry , Air , Animals , Copper/pharmacokinetics , Fertilizers , Hydrogen-Ion Concentration , Lead/pharmacokinetics , Manure/analysis , Medical Waste Disposal/instrumentation , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Sus scrofa , Temperature
12.
Nanoscale Res Lett ; 7(1): 583, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23092303

ABSTRACT

Ionic liquid (IL)-stabilized non-spherical gold nanofluids have been synthesized by a one-step method in aqueous solution. The whole reaction proceeded in room temperature. In the presence of amino-functionalized ionic liquids, gold nanofluids with long-wave surface plasmon resonance (SPR) absorption (>600 nm) could be obtained by adopting tannic acid as the reductant. The specific SPR absorption was related to the non-spherical gold nanoparticles including gold triangle, decahedra, and icosahedra nanocrystals. All the nanocrystals were observed by transmission electron microscopy. It was deduced that the formation of non-spherical gold nanofluids was related to the hydroxyls in tannic acid while IL acted as the synthesis template.

13.
Dongwuxue Yanjiu ; 31(2): 141-6, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20545003

ABSTRACT

At present, transcription analysis of gene expression commonly uses housekeeping genes as control for normalization. In this study, the expression levels of three housekeeping genes including GAPDH, beta-actin, and 18S rRNA in six tissues and five developmental stages of the Mandarin fish Siniperca chuatsi were assayed with quantitative real-time PCR (qPCR). Differences in expression levels were analyzed using geNorm program. The results demonstrate that beta-actin is the most stable gene at developmental stages and GAPDH is the most stable in different tissues. While 18S rRNA expression during development is differentially regulated, which indicates it is suitable as an internal control for gene expression normalization at the developmental level. Overall, the data suggest that the two most stable housekeeping genes are enough to accurately calibrate gene expression in S. chuatsi. The significance of this study provided convincing references and methodology for housekeeping gene selection and normalization in gene expression analysis with regular PCR or qPCR.


Subject(s)
Gene Expression Profiling , Gene Expression , Actins , Animals , Perciformes/genetics , Real-Time Polymerase Chain Reaction , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...