Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 11: 1247233, 2023.
Article in English | MEDLINE | ID: mdl-37841727

ABSTRACT

There exist numerous pathogens that are capable of causing infections within the central nervous system (CNS); however, conventional detection and analysis methods prove to be challenging. Clinical diagnosis of CNS infections often depends on clinical characteristics, cerebrospinal fluid (CSF) analysis, imaging, and molecular detection assays. Unfortunately, these methods can be both insensitive and time consuming, which can lead to missed diagnoses and catastrophic outcomes, especially in the case of infrequent diseases. Despite the application of appropriate prophylactic regimens and evidence-based antimicrobial agents, CNS infections continue to result in significant morbidity and mortality in hospital settings. Metagenomic next-generation sequencing (mNGS) is a novel tool that enables the identification of thousands of pathogens in a target-independent manner in a single run. The role of this innovative detection method in clinical pathogen diagnostics has matured over time. In this particular research, clinicians employed mNGS to investigate a suspected CNS infection in a child with leukemia, and unexpectedly detected Toxoplasma gondii. Case: A 3-year-old child diagnosed with T-cell lymphoblastic lymphoma was admitted to our hospital due to a 2-day history of fever and headache, along with 1 day of altered consciousness. Upon admission, the patient's Glasgow Coma Scale score was 14. Brain magnetic resonance imaging revealed multiple abnormal signals. Due to the patient's atypical clinical symptoms and laboratory test results, determining the etiology and treatment plan was difficulty.Subsequently, the patient underwent next-generation sequencing examination of cerebrospinal fluid. The following day, the results indicated the presence of Toxoplasma gondii. The patient received treatment with a combination of sulfamethoxazole (SMZ) and azithromycin. After approximately 7 days, the patient's symptoms significantly improved, and they were discharged from the hospital with oral medication to continue at home. A follow-up polymerase chain reaction (PCR) testing after about 6 weeks revealed the absence of Toxoplasma. Conclusion: This case highlights the potential of mNGS as an effective method for detecting toxoplasmic encephalitis (TE). Since mNGS can identify thousands of pathogens in a single run, it may be a promising detection method for investigating the causative pathogens of central nervous system infections with atypical features.


Subject(s)
Central Nervous System Infections , Encephalitis , Humans , Child, Preschool , Brain/diagnostic imaging , High-Throughput Nucleotide Sequencing/methods , Encephalitis/diagnosis , Encephalitis/cerebrospinal fluid
2.
Front Cell Infect Microbiol ; 12: 899508, 2022.
Article in English | MEDLINE | ID: mdl-36189371

ABSTRACT

Objective: This study aims to assess the clinical utility of next-generation sequencing (NGS) in sepsis diagnosis. Methods: A prospective study was conducted on patients with a high suspicion of sepsis by unknown pathogens from January 2017 to December 2021. Blood samples were taken from patients to perform NGS, blood culture (BC), leucocyte (WBC), procalcitonin (PCT), creatinine (CREA), Albumin (ALB) and C-reactive protein (CRP) tests. Results: The feedback time for BC was 3~5 days for bacteria and 5~7 days for fungi, while the turnover time for NGS was only 24 h. The clinical diagnosis was considered the "gold standard". 83 patients passed our inclusion criteria and were separated into two groups by clinical diagnosis. 62 met the clinical diagnosis criteria for sepsis and 21 were non-sepsis. The data from the two groups were retrospectively compared and analyzed. Of 62 sepsis in 83 patients, 8(9.64%) were diagnosed by both BC and NGS, 51 (61.45%) by NGS only, 1(1.20%) by BC and 2 (2.41%) by conventional testing only; PCT, CREA, CRP levels and the detection rate of NGS and BC were higher in the sepsis group than in the non-sepsis group, while ALB levels were lower (p<0.05). The logistic regression results in our study revealed that NGS and ALB were independent prediction factors for sepsis (p<0.05), the area under the receiver operating characteristic curve (AUC), sensitivity and specificity of NGS for diagnosing sepsis was 0.857, 95.16% and 76.19%, while ALB was 0.728, 58.06%, 80.95%, respectively. The combination's sensitivity, specificity and AUC of NGS and ALB were 93.55%, 85.71% and 0.935, greater than that of Albumin or NGS only (both p<0.05). Conclusion: NGS can effectively and quickly identify pathogens, thereby emerges as a promising technology for sepsis diagnosis. Combination of NGS and ALB can be used for early screening and is more powerful than NGS or ALB only.


Subject(s)
C-Reactive Protein , Sepsis , Biomarkers , C-Reactive Protein/analysis , Creatinine , High-Throughput Nucleotide Sequencing , Humans , Procalcitonin , Prospective Studies , Retrospective Studies , Sepsis/microbiology , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...