Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
BMC Cardiovasc Disord ; 23(1): 58, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726083

ABSTRACT

BACKGROUND/AIMS: The activation of the complement system and subsequent inflammatory responses are important features of myocardial ischemia/reperfusion (I/R) injury. Exosomes are nanoscale extracellular vesicles that play a significant role in remote ischemic preconditioning (RIPC) cardioprotection. The present study aimed to test whether RIPC-induced plasma exosomes (RIPC-Exo) exert protective effects on myocardial I/R injury by inhibiting complement activation and inflammation and whether exosomal heat shock protein 90 (HSP90) mediates these effects. METHODS: Rat hearts underwent 30 min of coronary ligation followed by 2 h of reperfusion. Plasma exosomes were isolated from RIPC rats and injected into the infarcted myocardium immediately after ligation. Sixty rats were randomly divided into Sham, I/R, I/R + RIPC-Exo (50 µg/µl), and RIPC-Exo + GA (geldanamycin, 1 mg/kg, administration 30 min before ligation) groups. Cardiomyocyte apoptosis, the release of myocardial markers (LDH, cTnI and CK-MB), infarct size, the expression of HSP90, complement component (C)3, C5a, c-Jun N-terminal kinase (JNK), interleukin (IL)-1ß, tumor necrosis factor (TNF)-alpha and intercellular adhesion molecule -1 (ICAM-1) were assessed. RESULTS: RIPC-Exo treatment significantly reduced I/R-induced cardiomyocyte apoptosis, the release of myocardial markers (LDH, cTnI and CK-MB) and infarct size. These beneficial effects were accompanied by decreased C3 and C5a expression, decreased inflammatory factor levels (IL-1ß, TNF-α, and ICAM-1), decreased JNK and Bax, and increased Bcl-2 expression. Meanwhile, the expression of HSP90 in the exosomes from rat plasma increased significantly after RIPC. However, treatment with HSP90 inhibitor GA significantly reversed the cardioprotection of RIPC-Exo, as well as activated complement component, JNK signalling and inflammation, indicating that HSP90 in exosomes isolated from the RIPC was important in mediating the cardioprotective effects during I/R. CONCLUSION: Exosomal HSP90 induced by RIPC played a significant role in cardioprotection against I/R injury, and its function was in part linked to the inhibition of the complement system, JNK signalling and local and systemic inflammation, ultimately alleviating I/R-induced myocardial injury and apoptosis by the upregulation of Bcl-2 expression and the downregulation of proapoptotic Bax.


Subject(s)
Ischemic Preconditioning, Myocardial , Ischemic Preconditioning , Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/pathology , Intercellular Adhesion Molecule-1 , bcl-2-Associated X Protein , Tumor Necrosis Factor-alpha , Complement Activation , Inflammation , Infarction
2.
Cell ; 186(2): 398-412.e17, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36669474

ABSTRACT

Public health studies indicate that artificial light is a high-risk factor for metabolic disorders. However, the neural mechanism underlying metabolic modulation by light remains elusive. Here, we found that light can acutely decrease glucose tolerance (GT) in mice by activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) innervating the hypothalamic supraoptic nucleus (SON). Vasopressin neurons in the SON project to the paraventricular nucleus, then to the GABAergic neurons in the solitary tract nucleus, and eventually to brown adipose tissue (BAT). Light activation of this neural circuit directly blocks adaptive thermogenesis in BAT, thereby decreasing GT. In humans, light also modulates GT at the temperature where BAT is active. Thus, our work unveils a retina-SON-BAT axis that mediates the effect of light on glucose metabolism, which may explain the connection between artificial light and metabolic dysregulation, suggesting a potential prevention and treatment strategy for managing glucose metabolic disorders.


Subject(s)
Adipose Tissue, Brown , Hypothalamus , Mice , Animals , Humans , Adipose Tissue, Brown/metabolism , Hypothalamus/metabolism , Thermogenesis/physiology , Retina , Retinal Ganglion Cells , Glucose/metabolism
3.
J Invest Surg ; 35(5): 1012-1020, 2022 May.
Article in English | MEDLINE | ID: mdl-34670452

ABSTRACT

OBJECTIVE: We previously showed that HSP90 is involved in postconditioning cardioprotection by inhibiting complement C5a. Here, we investigated whether HSP90-mediated C5a/NF-κB inhibition is responsible for the cardioprotection conferred by liraglutide. METHODS: Rat hearts underwent a 30 min occlusion of the anterior descending coronary artery, after which reperfusion was performed for 2 h. A total of 100 rats were randomly assigned to the following groups: ischemia/reperfusion (I/R), sham, liraglutide preconditioning (LP, liraglutide, 0.18 mg/kg, intravenously, 12 h before ischemia), HSP90 inhibitor geldanamycin (GA, 1 mg/kg, intraperitoneally, 30 min before ischemia) plus LP, and C5a receptor antagonist PMX53 (1 mg/kg, intravenously, 30 min before ischemia) plus LP. Cardiac injury, C5a/NF-κB activation, and inflammation were investigated. RESULTS: LP significantly attenuated I/R-induced cardiomyocyte apoptosis, infarct size, and secretion of creatine kinase-MB, lactate dehydrogenase and cardiac troponin I. These effects were complemented by decreased C5a levels, nuclear factor (NF)-κB signaling, inflammatory cytokine expression, and increased HSP90 levels. GA, an HSP90 inhibitor, promotes C5a activation, NF-κB signaling, and inflammation and suppresses cardioprotection by LP. By contrast, PMX53, a C5a inhibitor, suppressed C5a activation, NF-κB signaling, and inflammation, and enhanced cardioprotection by LP. CONCLUSION: HSP90 markedly contributes to LP cardioprotection by inhibiting inflammatory responsesand C5a/NF-κB signaling , ultimately attenuating I/R-induced cardiomyocyte apoptosis by suppressing the proapoptotic factor Bax, and inducing the anti-apoptotic factor Bcl2.


Subject(s)
Liraglutide , NF-kappa B , Animals , Inflammation , Liraglutide/pharmacology , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
4.
Open Med (Wars) ; 16(1): 1552-1563, 2021.
Article in English | MEDLINE | ID: mdl-34722891

ABSTRACT

BACKGROUND: Activation of the complement component 5a (C5a) and nuclear factor κB (NF-κB) signaling is an important feature of myocardial ischemia/reperfusion (I/R) injury and recent studies show that morphine postconditioning (MP) attenuates the myocardial injury. However, the mediating cardioprotective mechanisms remain unclear. The present study explores the role and interaction of heat shock protein 90 (HSP90), Akt, C5a, and NF-κB in MP-induced cardioprotection. METHODS: Male Sprague Dawley rats (n = 160) were randomized into eight groups (n = 20 per group). Rats in the sham group underwent thoracotomy, passing the ligature through the heart but without tying it (150 min), and the other seven groups were subjected to 30 min of anterior descending coronary artery occlusion followed by 2 h of reperfusion and the following treatments: I/R (30 min of ischemia and followed by 2 h of reperfusion); ischemic postconditioning (IPostC, 30 s of ischemia altered with 30 s of reperfusion, repeated for three cycles, and followed by reperfusion for 2 h); MP (0.3 mg/kg morphine administration 10 min before reperfusion); MP combined with the HSP90 inhibitor geldanamycin (GA, 1 mg/kg); MP combined with the Akt inhibitor GSK-690693 (GSK, 20 mg/kg); and MP combined with the C5a inhibitor PMX205 (PMX, 1 mg/kg/day, administration via drinking water for 28 days) and MP combined with the NF-κB inhibitor EVP4593 (QNZ, 1 mg/kg). All inhibitors were administered 10 min before morphine and followed by 2 h reperfusion. RESULTS: MP significantly reduced the I/R-induced infarct size, the apoptosis, and the release of cardiac troponin I, lactate dehydrogenase (LDH), and creatine kinase-MB. These beneficial effects were accompanied by increased expression of HSP90 and p-Akt, and decreased expression of C5a, NF-κB, tumor necrosis factor α, interleukin-1ß, and intercellular cell adhesion molecule 1. However, HSP90 inhibitor GA or Akt inhibitor GSK increased the expression of C5a and NF-κB and prevented MP-induced cardioprotection. Furthermore, GA inhibited the MP-induced upregulation of p-Akt, while GSK did not affect HSP90, indicating that p-Akt acts downstream of HSP90 in MP-induced cardioprotection. In addition, C5a inhibitor PMX enhanced the MP-induced downregulation of NF-κB, while NF-κB inhibitor QNZ had no effect on C5a, indicating that the C5a/NF-κB signaling pathway is involved in MP-induced cardioprotection. CONCLUSION: HSP90 is critical for MP-mediated cardioprotection possibly by promoting the phosphorylation of Akt and inhibiting the activation of C5a and NF-κB signaling and the subsequent myocardial inflammation, ultimately attenuating the infarct size and cardiomyocyte apoptosis.

5.
Article in English | MEDLINE | ID: mdl-34335801

ABSTRACT

Lung adenocarcinoma (LUAD) is one of the most prevalent malignancies. However, its mechanism and therapeutic strategy remain to be clarified. Mangiferin is a flavonoid derived from the leaves of mango trees of the lacquer family that has many pharmacological and physiological effects. This research aimed to elucidate the biological effect of mangiferin in LUAD cell lines and clarify the in vitro mechanism of mangiferin. Mangiferin was shown to significantly restrain the proliferation of LUAD cells (A549, H1299, and H2030 cells) in a dose- and time-dependent manner. Furthermore, mangiferin was capable of stimulating apoptosis, and more cells were blocked in G1 and S phase in the mangiferin-treated cells than in those not treated with mangiferin. Microarrays and micro-RNA sequencing data suggested that there is a higher level of miR-27b and miR-92a in LUAD tissues than in non-LUAD tissues. Additional experiments indicated that mangiferin may be related to the downregulated levels of miR-92a and miR-27b. In conclusion, mangiferin likely regulates proliferation and apoptosis in LUAD cells by reducing the expression levels of miR-92a and miR-27b.

6.
Clin Hemorheol Microcirc ; 76(1): 51-62, 2020.
Article in English | MEDLINE | ID: mdl-32651307

ABSTRACT

BACKGROUND: Myocardial inflammation mediated by toll-like receptor 4 (TLR4) plays an active role in myocardial ischemia/reperfusion (I/R) injury. Studies show that heat shock protein 90 (HSP90) is involved in ischemic postconditioning (IPostC) cardioprotection. This study investigates the roles of TLR4 and HSP90 in IPostC. METHODS: Rats were subjected to 30 min ischemia, then 2 h reperfusion. IPostC was applied by three cycles of 30 s reperfusion, then 30 s reocclusion at reperfusion onset. Sixty rats were randomly divided into four groups: sham, I/R, IPostC, and geldanamycin (GA, HSP90 inhibitor, 1 mg/kg) plus IPostC (IPostC + GA). RESULTS: IPostC significantly reduced I/R-induced infarct size (40.2±2.1% versus 28.4±2.4%; P < 0.05); the release of cardiac Troponin T, creatine kinase-MB, and lactate dehydrogenase (191.5±3.1 versus 140.6±3.3 pg/ml, 3394.6±132.7 versus 2880.7±125.5 pg/ml, 2686.2±98.6 versus 1848.8±90.1 pg/ml, respectively; P < 0.05); and cardiomyocyte apoptosis (40.3±2.2% versus 27.0±1.6%; P < 0.05). Further, local and circulating IL-1ß, IL-6, TNF-α, and ICAM-1 levels decreased; TLR4 expression and nuclear factor-KB (NF-κB) signaling decreased; and cardiac HSP90 expression increased. Blocking HSP90 function with GA inhibited IPostC protection and anti-inflammation, suggesting that IPostC has a HSP90-dependent anti-inflammatory effect. CONCLUSION: HSP90 may play a role in IPostC-mediated cardioprotection by inhibiting TLR4 activation, local and systemic inflammation, and NF-kB signaling.


Subject(s)
HSP90 Heat-Shock Proteins/therapeutic use , Inflammation/metabolism , Ischemic Postconditioning/methods , Toll-Like Receptor 4/metabolism , Animals , HSP90 Heat-Shock Proteins/pharmacology , Humans , Male , Rats , Rats, Sprague-Dawley , Signal Transduction
7.
Nat Neurosci ; 23(7): 869-880, 2020 07.
Article in English | MEDLINE | ID: mdl-32483349

ABSTRACT

Besides generating vision, light modulates various physiological functions, including mood. While light therapy applied in the daytime is known to have anti-depressive properties, excessive light exposure at night has been reportedly associated with depressive symptoms. The neural mechanisms underlying this day-night difference in the effects of light are unknown. Using a light-at-night (LAN) paradigm in mice, we showed that LAN induced depressive-like behaviors without disturbing the circadian rhythm. This effect was mediated by a neural pathway from retinal melanopsin-expressing ganglion cells to the dorsal perihabenular nucleus (dpHb) to the nucleus accumbens (NAc). Importantly, the dpHb was gated by the circadian rhythm, being more excitable at night than during the day. This indicates that the ipRGC→dpHb→NAc pathway preferentially conducts light signals at night, thereby mediating LAN-induced depressive-like behaviors. These findings may be relevant when considering the mental health effects of the prevalent nighttime illumination in the industrial world.


Subject(s)
Circadian Rhythm/physiology , Circadian Rhythm/radiation effects , Depression/physiopathology , Light/adverse effects , Visual Pathways/physiology , Animals , Depression/etiology , Habenula/physiology , Habenula/radiation effects , Mice , Nucleus Accumbens/physiology , Nucleus Accumbens/radiation effects , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/radiation effects , Visual Pathways/radiation effects
8.
Mol Med Rep ; 22(1): 209-218, 2020 07.
Article in English | MEDLINE | ID: mdl-32377693

ABSTRACT

Toll-like receptor 2 (TLR2)-mediated myocardial inflammation serves an important role in promoting myocardial ischemic/reperfusion (I/R) injury. Previous studies have shown that miR­499 is critical for cardioprotection after ischemic postconditioning (IPostC). Therefore, the present study evaluated the protective effect of IPostC on the myocardium by inhibiting TLR2, and also assessed the involvement of microRNA (miR)­499. Rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. The IPostC was 3 cycles of 30 sec of reperfusion and 30 sec of re­occlusion prior to reperfusion. In total, 90 rats were randomly divided into six groups (n=15 per group): Sham; I/R; IPostC; miR­499 negative control adeno­associated virus (AAV) vectors + IPostC; miR­499 inhibitor AAV vectors + IPostC; and miR­499 mimic AAV vectors + IPostC. It was identified that IPostC significantly decreased the I/R­induced cardiomyocyte apoptotic index (29.4±2.03% in IPostC vs. 42.64±2.27% in I/R; P<0.05) and myocardial infarct size (48.53±2.49% in IPostC vs. 66.52±3.1% in I/R; P<0.05). Moreover, these beneficial effects were accompanied by increased miR­499 expression levels (as demonstrated by reverse transcription­quantitative PCR) in the myocardial tissue and decreased TLR2, protein kinase C (PKC), interleukin (IL)­1ß and IL­6 expression levels (as demonstrated by western blotting and ELISA) in the myocardium and serum. The results indicated that IPostC + miR­499 mimics significantly inhibited inflammation and the PKC signaling pathway and enhanced the anti­inflammatory and anti­apoptotic effects of IPostC. However, IPostC + miR­499 inhibitors had the opposite effect. Therefore, it was speculated that IPostC may have a miR­499­dependent cardioprotective effect. The present results suggested that miR­499 may be involved in IPostC­mediated ischemic cardioprotection, which may occur via local and systemic TLR2 inhibition, subsequent inhibition of the PKC signaling pathway and a decrease in inflammatory cytokine release, including IL­1ß and IL­6. Moreover, these effects will ultimately lead to a decrease in the myocardial apoptotic index and myocardial infarct size via the induction of the anti­apoptotic protein Bcl­2, and inhibition of the pro­apoptotic protein Bax in myocardium.


Subject(s)
Ischemic Postconditioning , MicroRNAs/genetics , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/therapy , Toll-Like Receptor 2/analysis , Up-Regulation , Animals , Down-Regulation , Ischemic Postconditioning/methods , Male , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Rats, Sprague-Dawley , Toll-Like Receptor 2/blood
9.
Acta Cir Bras ; 35(1): e202000105, 2020.
Article in English | MEDLINE | ID: mdl-32215465

ABSTRACT

PURPOSE: To investigate whether heat shock protein 90 (HSP90) is involved in complement regulation in ischemic postconditioning (IPC). METHODS: The left coronary artery of rats underwent 30 min of occlusion, followed by 120 min of reperfusion and treatment with IPC via 3 cycles of 30s reperfusion and 30s occlusion. The rats were injected intraperitoneally with 1 mg/kg HSP90 inhibitor geldanamycin (GA) after anesthesia. Eighty rats were randomly divided into four groups: sham, ischemia-reperfusion (I/R), IPC and IPC + GA. Myocardial infarct size, apoptosis index and the expression of HSP90, C3, C5a, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1ß and c-Jun N-terminal kinase (JNK) were assessed. RESULTS: Compared with the I/R injury, the IPC treatment significantly reduced infarct size, release of troponin T, creatine kinase-MB, and lactate dehydrogenase, and cardiomyocyte apoptosis. These beneficial effects were accompanied by a decrease in TNF-α, IL-1ß, C3, C5a and JNK expression levels. However, all these effects were abrogated by administration of the HSP90 inhibitor GA. CONCLUSION: HSP90 exerts a profound effect on IPC cardioprotection, and may be linked to the inhibition of the complement system and JNK, ultimately attenuating I/R-induced myocardial injury and apoptosis.


Subject(s)
Benzoquinones/pharmacology , Complement System Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Lactams, Macrocyclic/pharmacology , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Animals , Creatine Kinase, MB Form/metabolism , Inflammation Mediators , Ischemic Postconditioning/methods , Male , RNA, Messenger/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
10.
Acta cir. bras ; 35(1): e202000105, 2020. tab, graf
Article in English | LILACS | ID: biblio-1088523

ABSTRACT

Abstract Purpose To investigate whether heat shock protein 90 (HSP90) is involved in complement regulation in ischemic postconditioning (IPC). Methods The left coronary artery of rats underwent 30 min of occlusion, followed by 120 min of reperfusion and treatment with IPC via 3 cycles of 30s reperfusion and 30s occlusion. The rats were injected intraperitoneally with 1 mg/kg HSP90 inhibitor geldanamycin (GA) after anesthesia. Eighty rats were randomly divided into four groups: sham, ischemia-reperfusion (I/R), IPC and IPC + GA. Myocardial infarct size, apoptosis index and the expression of HSP90, C3, C5a, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1β and c-Jun N-terminal kinase (JNK) were assessed. Results Compared with the I/R injury, the IPC treatment significantly reduced infarct size, release of troponin T, creatine kinase-MB, and lactate dehydrogenase, and cardiomyocyte apoptosis. These beneficial effects were accompanied by a decrease in TNF-α, IL-1β, C3, C5a and JNK expression levels. However, all these effects were abrogated by administration of the HSP90 inhibitor GA. Conclusion HSP90 exerts a profound effect on IPC cardioprotection, and may be linked to the inhibition of the complement system and JNK, ultimately attenuating I/R-induced myocardial injury and apoptosis.


Subject(s)
Animals , Rats , Complement System Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Benzoquinones/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Myocardial Infarction/metabolism , RNA, Messenger/metabolism , Random Allocation , Tumor Necrosis Factor-alpha/metabolism , Rats, Sprague-Dawley , Inflammation Mediators , Creatine Kinase, MB Form/metabolism , Ischemic Postconditioning/methods
11.
J Theor Biol ; 445: 136-150, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29476833

ABSTRACT

The enhancer-promoter interactions (EPIs) with strong tissue-specificity play an important role in cis-regulatory mechanism of human cell lines. However, it still remains a challenging work to predict these interactions so far. Due to that these interactions are regulated by the cooperativeness of diverse functional genomic signatures, DNA spatial structure and DNA sequence elements. In this paper, by adding DNA structure properties and transcription factor binding motifs, we presented an improved computational method to predict EPIs in human cell lines. In comparison with the results of other group on the same datasets, our best accuracies by cross-validation test were about 15%-24% higher in the same cell lines, and the accuracies by independent test were about 11%-15% higher in new cell lines. Meanwhile, we found that transcription factor binding motifs and DNA structure properties have important information that would largely determine long range EPIs prediction. From the distribution comparisons, we also found their distinct differences between interacting and non-interacting sets in each cell line. Then, the correlation analysis and network models for relationships among top-ranked functional genomic signatures indicated that diverse genomic signatures would cooperatively establish a complex regulatory network to facilitate long range EPIs. The experimental results provided additional insights about the roles of DNA intrinsic properties and functional genomic signatures in EPIs prediction.


Subject(s)
Genome, Human/physiology , Models, Biological , Nucleotide Motifs/physiology , Response Elements/physiology , Transcription Factors/metabolism , Cell Line , Humans
12.
Cell Physiol Biochem ; 44(3): 982-997, 2017.
Article in English | MEDLINE | ID: mdl-29179175

ABSTRACT

BACKGROUND/AIMS: Previous studies have shown that heat shock protein 90 (HSP90)-mediated mitochondrial import of connexin 43 (Cx43) is critical in preconditioning cardioprotection. The present study was designed to test whether postconditioning has the same effect as preconditioning in promoting Cx43 translocation to mitochondria and whether mitochondrial HSP90 modulates this effect. METHODS: Cellular models of hypoxic postconditioning (HPC) from rat heart-derived H9c2 cells and neonatal rat cardiomyocytes were employed. The effects of HPC on cardiomyocytes apoptosis were examined by flow cytometry and Hoechst 33342 fluorescent staining. Reactive oxidative species (ROS) production was assessed with the peroxide-sensitive fluorescent probe 2',7'-dichlorofluorescin in diacetate (DCFH-DA). The anti- and pro-apoptotic markers Bcl-2 and Bax, HSP90 and Cx43 protein levels were studied by Western blot analysis in total cell homogenate and sarcolemmal and mitochondrial fractions. The effects on HPC of the HSP90 inhibitor geldanamycin (GA), ROS scavengers superoxide dismutase (SOD) and catalase (CAT), and small interfering RNA (siRNA) targeting Cx43 and HSP90 were also investigated. RESULTS: HPC significantly reduced hypoxia/reoxygenation (H/R)-induced cardiomyocyte apoptosis. These beneficial effects were accompanied by an increase in Bcl-2 levels and a decrease in Bax levels in both sarcolemmal and mitochondrial fractions. HPC with siRNA targeting Cx43 or the ROS scavengers SOD plus CAT significantly prevented ROS generation and HPC cardioprotection, but HPC with either SOD or CAT did not. These data strongly supported the involvement of Cx43 in HPC cardioprotection, likely via modulation of the ROS balance which plays a central role in HPC protection. Furthermore, HPC increased total and mitochondrial levels of HSP90 and the mitochondria-to-sarcolemma ratio of Cx43; blocking the function of HSP90 with the HSP90 inhibitor geldanamycin (GA) or siRNA targeting HSP90 prevented the protection of HPC and the HPC-induced association of Cx43, indicating that mitochondrial HSP90 was important for mitochondrial translocation of Cx43 during HPC. CONCLUSION: Mitochondrial HSP90 played a central role in HPC cardioprotection, and its activity was linked to the mitochondrial targeting of Cx43, the activation of which triggered ROS signaling and the subsequent reduction of redox stress. Consequently, its target gene, Bcl-2, was upregulated, and proapoptotic Bax was inhibited in the sarcolemma and mitochondria, ultimately attenuating H/R-induced cardiomyocyte apoptosis. These data reveal a novel mechanism of HPC protection.


Subject(s)
Connexin 43/metabolism , HSP90 Heat-Shock Proteins/metabolism , Animals , Apoptosis/drug effects , Benzoquinones/pharmacology , Catalase/pharmacology , Cell Hypoxia , Cell Line , Connexin 43/antagonists & inhibitors , Connexin 43/genetics , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics , Lactams, Macrocyclic/pharmacology , Microscopy, Fluorescence , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Sarcolemma/metabolism , Superoxide Dismutase/pharmacology , bcl-2-Associated X Protein/metabolism
13.
Dongwuxue Yanjiu ; 34(E3): E101-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23776003

ABSTRACT

The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation, but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown. Computational neuroscience studies indicate that high-frequency bursts in stimulus-driven responses can be transmitted across synapses more reliably than isolated spikes, and thus may carry accurate stimulus-related information. Our research examined whether or not adaptation affects the burst firing property of visual cortical neurons by examining changes in the burst firing changes of V1 neurons during adaptation to the preferred visual stimulus. The results show that adaptation to prolonged visual stimulation significantly decreased burst frequency (bursts/s) and burst length (spikes/burst), but increased burst duration and the interspike interval within bursts. These results suggest that the adaptation of V1 neurons to visual stimulation may result in a decrease of feedforward response gain but an increase of functional activities from lateral and/or feedback connections, which could lead to a reduction in the effectiveness of adapted neurons in transmitting information to its driven neurons.


Subject(s)
Adaptation, Physiological , Sensory Receptor Cells/physiology , Animals , Cats , Cells, Cultured , Female , Male , Photic Stimulation , Sensory Receptor Cells/chemistry , Synapses/chemistry , Synapses/physiology , Visual Cortex/chemistry , Visual Cortex/cytology
14.
Dongwuxue Yanjiu ; 33(2): 218-24, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22467399

ABSTRACT

Psychophysical studies suggest that lateral extrastriate visual cortical areas in cats may mediate the sparing of vision largely by network reorganization following lesions of early visual cortical areas. To date, however, there is little direct physiological evidence to support this hypothesis. Using in vivo single-unit recording techniques, we examined the response of neurons in areas 19, 21, and 20 to different types of visual stimulation in cats with or without acute bilateral lesions in areas 17 and 18. Our results showed that, relative to the controls, acute lesions inactivated the response of 99.3% of neurons to moving gratings and 93% of neurons to flickering square stimuli in areas 19, 21, and 20. These results indicated that acute lesions of primary visual areas in adult cats may impair most visual abilities. Sparing of vision in cats with neonatal lesions in early visual cortical areas may result largely from a postoperative reorganization of visual pathways from subcortical nucleus to extrastriate visual cortical areas.


Subject(s)
Neurons/metabolism , Visual Cortex/physiology , Animals , Cats , Electrophysiology , Photic Stimulation , Visual Cortex/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...