Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 647: 438-445, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37269740

ABSTRACT

Incorporating less expensive nonmetal phosphorus (P) into noble metal-based catalysts has become a developing strategy to enhance the catalytic performance of electrocatalysts for methanol electrooxidation reaction (MOR), attributing to the electronic and synergistic structure alteration mechanism. In the work, three-dimensional nitrogen-doped graphene anchoring ternary Pd-Ir-P nanoalloy catalyst (Pd7IrPx/NG) was prepared by co-reduction strategy. As a multi-electron system, elemental P adjusts the outer electron structure of Pd and diminishes the particle size of nanocomposites, which heightens the electrocatalytic activity effectively and accelerate MOR kinetics in alkaline medium. The study reveals that the electron effect and ligand effect induced by P atoms on the hydrophilic and electron-rich surface of Pd7Ir/NG and Pd7IrPx/NG samples can reduce the initial oxidation potential and peak potential of COads, showing significantly enhanced the anti-poisoning ability compared with commercial Pd/C as the benchmark. Meanwhile, the stability of Pd7IrPx/NG is significantly higher than that of commercial Pd/C. The facile synthetic approach provides an economic option and a new vision for the development of electrocatalysts in MOR.

2.
J Colloid Interface Sci ; 629(Pt B): 482-491, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36174291

ABSTRACT

Interface construction is one of the most feasible approaches to optimize the physical and chemical properties of noble metal-based catalysts and consequently improve their catalytic performance. Herein, the design of effective reaction interfaces by bimetallic, trimetallic or polymetallic alloying has been extensively explored. In this research, metalloid boron (B) was alloyed within palladium-iridium (Pd-Ir) nanoalloy supported on nitrogen-doped graphene (NG) to promote the methanol oxidation reaction (MOR) in alkaline media. Being benefited from this, the optimum Pd7IrBx/NG catalyst exhibited enhanced EOR activity mass activity (1141.7 mA mg-1) and long-term stability (58.2 % current density retention rate after 500 cycles of cyclic voltammetry). The mechanism was further studied by electrochemical experiments and characterization, which highlighted that the multifunctional effect of electronic effect and strain effect and kinetic optimization induced by boron doping played a very positive role on MOR.

SELECTION OF CITATIONS
SEARCH DETAIL
...