Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 554
Filter
1.
Digit Health ; 10: 20552076241257447, 2024.
Article in English | MEDLINE | ID: mdl-38840657

ABSTRACT

Objective: This study aimed to compare the effectiveness of instant versus text messaging intervention (TMI) on antiretroviral therapy (ART) adherence among men who have sex with men (MSM) living with HIV. Methods: This study was conducted in an infectious disease hospital of Jinan, China from October 2020 to June 2021, using non-randomized concurrent controlled design to compare the effectiveness of instant messaging intervention (IMI) versus TMI. The intervention strategies (health messaging, medication reminder, and peer education) and contents were consistent between the two groups, and the difference was service delivery method and type of information. The primary outcome was the proportion of achieving optimal ART adherence, defined as never missing any doses and delayed any doses more than 1 hour. Results: A total of 217 participants (including 72 in TMI group and 145 in IMI group) were included in the study. The proportion of achieving optimal adherence was higher in IMI group than TMI group at the first follow-up (90.2% versus 77.6%, p = 0.021) and second follow-up (86.5% versus 76.6%, p = 0.083). The effect of IMI versus TMI on improving ART adherence was found not to be statistically significant (risk ratio (RR) = 1.93, 95% confidence interval (CI): 0.95-3.94) in complete-case analysis. However, when excluding participants who did not adhere to the interventions, a significant improvement was observed (RR = 2.77, 95%CI: 1.21-6.38). More participants in IMI group expressed highly rated satisfaction to the intervention services than those in TMI group (67.3% versus 50.0%). Conclusions: The IMI demonstrated superior efficacy over TMI in improving ART adherence and satisfaction with intervention services. It is suggested that future digital health interventions targeting ART adherence should prioritize instant messaging with multimedia information in areas with Internet access. Trial registration: The study was registered at the Chinese Clinical Trial Register (ChiCTR), with number [ChiCTR2000041282].

2.
Cell Death Dis ; 15(5): 325, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724499

ABSTRACT

Cholesterol metabolism reprogramming is one of the significant characteristics of hepatocellular carcinoma (HCC). Cholesterol increases the risk of epithelial-mesenchymal transition (EMT) in cancer. Sterol O-acyltransferases 1 (SOAT1) maintains the cholesterol homeostasis. However, the exact mechanistic contribution of SOAT1 to EMT in HCC remains unclear. Here we demonstrated that SOAT1 positively related to poor prognosis of HCC, EMT markers and promoted cell migration and invasion in vitro, which was mediated by the increased cholesterol in plasmalemma and cholesterol esters accumulation. Furthermore, we reported that SOAT1 disrupted cholesterol metabolism homeostasis to accelerate tumorigenesis and development in HCC xenograft and NAFLD-HCC. Also, we detected that nootkatone, a sesquiterpene ketone, inhibited EMT by targeting SOAT1 in vitro and in vivo. Collectively, our finding indicated that SOAT1 promotes EMT and contributes to hepatocarcinogenesis by increasing cholesterol esterification, which is suppressed efficiently by nootkatone. This study demonstrated that SOAT1 is a potential biomarker and therapeutic target in NAFLD-HCC and SOAT1-targeting inhibitors are expected to be the potential new therapeutic treatment for HCC.


Subject(s)
Carcinoma, Hepatocellular , Cholesterol , Epithelial-Mesenchymal Transition , Liver Neoplasms , Sterol O-Acyltransferase , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Humans , Cholesterol/metabolism , Sterol O-Acyltransferase/metabolism , Sterol O-Acyltransferase/genetics , Animals , Mice , Male , Mice, Nude , Cell Line, Tumor , Cell Movement , Female , Mice, Inbred BALB C , Sesquiterpenes/pharmacology , Gene Expression Regulation, Neoplastic
3.
J Ethnopharmacol ; 332: 118320, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740107

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kelisha capsules (KLS) are often used to treat acute diarrhoea, bacillary dysentery, heat stroke, and other diseases. One of its components, Asarum, contains aristolochic acid I which is both nephrotoxic and carcinogenic. However, the aristolochic acid (AA) content in KLS and its toxicity remain unclear. AIM OF THE STUDY: The aims of this study were to quantitatively determine the contents of five aristolochic acid analogues (AAAs) in Asarum and KLS, and systematically evaluate the in vivo toxicity of KLS in rats. MATERIALS AND METHODS: Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the content of the five AAAs in Asarum and KLS. Sprague-Dawley rats were administered KLS at 0, 0.75, 1.5, and 3.0 g/kg respectively, and then sacrificed after 4 weeks of administration or after an additional 2 weeks of recovery. The endpoints assessed included body weight measurements, serum biochemistry and haematology indices, and clinical and histopathological observations. RESULTS: The AAAs content in Asarum sieboldii Miq. (HB-ESBJ) were much lower than those of the other Asarums. The contents of AA I, AA IVa, and aristolactam I in KLS were in the ranges of 0.03-0.06 µg/g, 1.89-2.16 µg/g, and 0.55-1.60 µg/g, respectively, whereas AA II and AA IIIa were not detected. None of the rats showed symptoms of toxic reactions and KLS was well tolerated throughout the study. Compared to the control group, the activated partial thromboplastin time values of rats in the 1.5 and 3.0 g/kg groups significantly reduced after administration (P < 0.05). In addition, the serum triglycerides of male rats in the 0.75 and 1.5 g/kg groups after administration, and the 0.75, 1.5, 3.0 g/kg groups after recovery were significantly decreased (P < 0.01 or P < 0.001). No significant drug-related toxicological changes were observed in other serum biochemical indices, haematology, or histopathology. CONCLUSIONS: The AA I content in KLS met the limit requirements (<0.001%) of the Chinese Pharmacopoeia. Therefore, it is safe to use KLS in the short-term. However, for safety considerations, attention should be paid to the effects of long-term KLS administration on coagulation function and triglyceride metabolism.

4.
Nat Commun ; 15(1): 4362, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778029

ABSTRACT

Light-induced spin currents with the faster response is essential for the more efficient information transmission and processing. Herein, we systematically explore the effect of light illumination energy and direction on the light-induced spin currents in the W/Y3Fe5O12 heterojunction. Light-induced spin currents can be clearly categorized into two types. One is excited by the low light intensity, which mainly involves the photo-generated spin current from spin photovoltaic effect. The other is caused by the high light intensity, which is the light-thermally induced spin current and mainly excited by spin Seebeck effect. Under low light-intensity illumination, light-thermally induced temperature gradient is very small so that spin Seebeck effect can be neglected. Furthermore, the mechanism on spin photovoltaic effect is fully elucidated, where the photo-generated spin current in Y3Fe5O12 mainly originates from the process of spin precession induced by photons. These findings provide some deep insights into the origin of light-induced spin current.

5.
J Nanobiotechnology ; 22(1): 237, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735920

ABSTRACT

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) promote tumor growth, metastasis, and lead to immunotherapy resistance. Studies revealed that miRNAs are also expressed in MDSCs and promote the immunosuppressive function of MDSCs. Currently, few studies have been reported on inducible cellular microvesicle delivery of nucleic acid drugs targeting miRNA in MDSCs for the treatment of malignant tumors. RESULTS AND CONCLUSION: In this study, we designed an artificial DNA named G-quadruplex-enhanced circular single-stranded DNA-9 (G4-CSSD9), that specifically adsorbs the miR-9 sequence. Its advanced DNA folding structure, rich in tandem repeat guanine (G-quadruplex), also provides good stability. Mesenchymal stem cells (MSCs) were prepared into nanostructured vesicles by membrane extrusion. The MSC microvesicles-encapsulated G4-CSSD9 (MVs@G4-CSSD9) was delivered into MDSCs, which affected the downstream transcription and translation process, and reduced the immunosuppressive function of MDSCs, so as to achieve the purpose of treating melanoma. In particular, it provides an idea for the malignant tumor treatment.


Subject(s)
DNA, Single-Stranded , G-Quadruplexes , Mesenchymal Stem Cells , MicroRNAs , Myeloid-Derived Suppressor Cells , Animals , Myeloid-Derived Suppressor Cells/metabolism , Mice , DNA, Single-Stranded/chemistry , Cell Line, Tumor , Mice, Inbred C57BL , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/metabolism , DNA, Circular/chemistry , Humans , Melanoma/drug therapy
6.
Heliyon ; 10(10): e31244, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818169

ABSTRACT

Universities and colleges play a pivotal role in the pursuit of a future that is sustainable through their pedagogical efforts and the execution of state-of-the-art research endeavors aimed at mitigating the effects of climate change. Higher Education Institutions (HEIs) serve as crucial catalysts in advancing sustainable development. HEIs are increasingly embracing precise measures to reduce their carbon footprint (CF) while also educating students on global sustainability. These nano-methods provide a quantitative framework for assessing a campus's sustainability efforts in line with Green Campus (GC) initiatives to lower carbon emissions align with GC goals. This study employs K-means clustering to analyze the integration of green and low-carbon principles in higher education political and ideological studies. Its goal is to identify patterns, assess teaching effectiveness, and improve sustainability education, aligning with Green Campus initiatives to enhance institutional contributions to sustainable growth through informed pedagogical strategies. Input data includes curriculum content, teaching methods, student engagement, and institutional goals related to sustainability. Seeking to improve sustainability education align with Green Campus initiatives, higher education can strategically enhance their contributions to long-term sustainability and growth through effective pedagogical approaches. Cluster 3 has the lowest WCSS value of 1200, indicating tighter cohesion and less variability within this cluster compared to Cluster 1 (1500) and Cluster 2 (1800). Cluster 3 stands out with the highest silhouette score of 0.7, suggesting well-defined and distinct clusters, while Cluster 2 has the lowest score of 0.4, indicating some overlap or ambiguity in data points. Cluster 1 has the lowest Davies-Bouldin Index of 0.4, implying better separation between clusters compared to Cluster 2 (0.6) and Cluster 3 (0.5). Cluster 3 is well-defined and cohesive, showing strong integration of green practices. Cluster 1 displays good separation and cohesion, while Cluster 2 requires refinement due to potential overlap in sustainability integration.

7.
BMC Public Health ; 24(1): 1470, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822308

ABSTRACT

BACKGROUND: Associations between perceived and actual risk of HIV infection and HIV prevention services uptake are inconclusive. This study aimed to evaluate the discrepancy between the perceived and actual HIV risk, and quantify the associations between perceived and actual risk of HIV infection and three HIV prevention services utilization among men who have sex with men (MSM) in Shandong province, China. METHODS: A cross-sectional study was conducted in Shandong province in June 2021. Participants were eligible if they were born biologically male, aged 18 years or older, had negative or unknown HIV status, and had sex with men in the past year. Participants were recruited online. The discrepancy between their perceived and actual risk of HIV infection was evaluated by calculating the Kappa value. Bayesian model averaging was used to assess the associations between perceived and actual risk of HIV infection and HIV prevention services uptake. RESULTS: A total of 1136 MSM were recruited, most of them were 30 years old or younger (59.9%), single (79.5%), with at least college education level (74.7%). Most participants (97.4%) perceived that they had low risk of HIV infection, and 14.1% were assessed with high actual risk. The discrepancy between their perceived and actual risk of HIV infection was evaluated with a Kappa value of 0.076 (P < 0.001). HIV testing uptake had a weak association with perceived high HIV prevalence among social networks (aOR = 1.156, post probability = 0.547). The perceived high HIV prevalence among national MSM was positive related to willingness to use PrEP (aOR = 1.903, post probability = 0.943) and PEP (aOR = 1.737, post probability = 0.829). Perceived personal risk (aOR = 4.486, post probability = 0.994) and perceived HIV prevalence among social networks (aOR = 1.280, post probability = 0.572) were related to history of using PrEP. Perceived personal risk (aOR = 3.144, post probability = 0.952), actual risk (aOR = 1.890, post probability = 0.950), and perceived risk among social networks (aOR = 1.502, post probability = 0.786) were related to history of using PEP. CONCLUSIONS: There is discordance between perceived and actual personal risk of HIV infection among MSM in China. HIV risk assessment and education on HIV prevalence among MSM should be strengthened to assist high-risk populations aware their risk accurately and hence access HIV prevention services proactively.


Subject(s)
HIV Infections , Homosexuality, Male , Humans , Male , Cross-Sectional Studies , China/epidemiology , HIV Infections/prevention & control , HIV Infections/epidemiology , Adult , Homosexuality, Male/statistics & numerical data , Homosexuality, Male/psychology , Young Adult , Health Knowledge, Attitudes, Practice , Adolescent , Middle Aged , Risk Assessment , Patient Acceptance of Health Care/statistics & numerical data , Patient Acceptance of Health Care/psychology , Surveys and Questionnaires
8.
Toxicology ; 506: 153838, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797228

ABSTRACT

Aristolochic acid (AA)-IIIa is an AA analog present in Aristolochiaceae plants. To evaluate the chronic toxicity of AA-IIIa, mice were intragastrically administered with media control, 1 mg/kg AA-IIIa, and 10 mg/kg AA-IIIa, and designated as the control (CTL), AA-IIIa low dose (AA-IIIa-L), and AA-IIIa high dose (AA-IIIa-H) groups, respectively. AA-IIIa was administered three times a week, every other day, for 24 weeks (24-week time point). Thereafter, some mice were sacrificed immediately, while others were sacrificed 29 or 50 weeks after AA-IIIa withdrawal (53- or 74-week time point). Serum and organs were collected for biochemical and pathological analyses, respectively. Whole-genome sequencing was performed on the kidney, liver, and stomach tissues of AA-IIIa-treated mice for single-nucleotide polymorphism (SNP) detection. AA-IIIa-H mice died at 66 weeks, and the remaining mice showed moribund conditions at the 69 weeks. AA-IIIa induced minor kidney tubule injury, fibroblast hyperplasia, and forestomach carcinoma in mice. Bladder, intestine, liver, heart, spleen, lung, and testis tissues were not pathologically altered by AA-IIIa. In addition, AA-IIIa increased the C:G > A:T mutation in the kidney; however, no SNP mutation changes were observed in the liver and forestomach tissues of AA-IIIa-H mice at the 24-week time point compared with control mice. Therefore, we suspect that AA-IIIa is potentially mutagenic for mice after overdose and long-term administration. On the other hand, the forestomach is a unique organ in mice, but it does not exist in humans; thus, we hypothesize that the stomach toxicity induced by AA-IIIa is not a suitable reference for toxicological evaluation in humans. We recommend that Aristolochiaceae plants containing AA-IIIa should be properly supervised, and overdosing and long-term administration of drugs containing AA-IIIa should be avoided.

9.
Comput Methods Programs Biomed ; 251: 108206, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723435

ABSTRACT

BACKGROUND AND OBJECTIVE: Low-dose computed tomography (LDCT) scans significantly reduce radiation exposure, but introduce higher levels of noise and artifacts that compromise image quality and diagnostic accuracy. Supervised learning methods have proven effective in denoising LDCT images, but are hampered by the need for large, paired datasets, which pose significant challenges in data acquisition. This study aims to develop a robust unsupervised LDCT denoising method that overcomes the reliance on paired LDCT and normal-dose CT (NDCT) samples, paving the way for more accessible and practical denoising techniques. METHODS: We propose a novel unsupervised network model, Bidirectional Contrastive Unsupervised Denoising (BCUD), for LDCT denoising. This model innovatively combines a bidirectional network structure with contrastive learning theory to map the precise mutual correspondence between the noisy LDCT image domain and the clean NDCT image domain. Specifically, we employ dual encoders and discriminators for domain-specific data generation, and use unique projection heads for each domain to adaptively learn customized embedded representations. We then align corresponding features across domains within the learned embedding spaces to achieve effective noise reduction. This approach fundamentally improves the model's ability to match features in latent space, thereby improving noise reduction while preserving fine image detail. RESULTS: Through extensive experimental validation on the AAPM-Mayo public dataset and real-world clinical datasets, the proposed BCUD method demonstrated superior performance. It achieved a peak signal-to-noise ratio (PSNR) of 31.387 dB, a structural similarity index measure (SSIM) of 0.886, an information fidelity criterion (IFC) of 2.305, and a visual information fidelity (VIF) of 0.373. Notably, subjective evaluation by radiologists resulted in a mean score of 4.23, highlighting its advantages over existing methods in terms of clinical applicability. CONCLUSIONS: This paper presents an innovative unsupervised LDCT denoising method using a bidirectional contrastive network, which greatly improves clinical applicability by eliminating the need for perfectly matched image pairs. The method sets a new benchmark in unsupervised LDCT image denoising, excelling in noise reduction and preservation of fine structural details.


Subject(s)
Signal-To-Noise Ratio , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Humans , Algorithms , Image Processing, Computer-Assisted/methods , Radiation Dosage , Unsupervised Machine Learning , Neural Networks, Computer , Artifacts
10.
Transl Lung Cancer Res ; 13(3): 552-572, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38601452

ABSTRACT

Background: With its diverse genetic foundation and heterogeneous nature, non-small cell lung cancer (NSCLC) needs a better comprehension of prognostic evaluation and efficient treatment targeting. Methods: Bioinformatics analysis was performed of The Cancer Genome Atlas (TCGA)-NSCLC and GSE68571 dataset. Overlapping differentially expressed genes (DEGs) were used for functional enrichment analysis and constructing the protein-protein interaction (PPI) network. In addition, key prognostic genes were identified through prognostic risk models, and their expression levels were verified. The phenotypic effects of cell division cycle 25C (CDC25C) regulation on NSCLC cell lines were assessed by in vitro experiments using various techniques such as flow cytometry, Transwell, and colony formation. Protein levels related to autophagy and apoptosis were assessed, specifically examining the impact of autophagy inhibition [3-methyladenine (3-MA)] and the miR-142-3p/CDC25C axis on this regulatory system. Results: CDC25C was identified as a key prognostic marker in NSCLC, showing high expression in tumor samples. In vitro experiments showed that CDC25C knockdown markedly reduced the capacity of cells to proliferate, migrate, invade, trigger apoptosis, and initiate cell cycle arrest. CDC25C and miR-142-3p displayed a reciprocal regulatory relationship. CDC25C reversed the inhibitory impacts of miR-142-3p on NSCLC cell cycle proliferation and progression. The synergy of miR-142-3p inhibition, CDC25C silencing, and 3-MA treatment was shown to regulate NSCLC cell processes including proliferation, apoptosis, and autophagy. Conclusions: MiR-142-3p emerged as a key player in governing autophagy and apoptosis by directly targeting CDC25C expression. This emphasizes the pivotal role of the miR-142-3p/CDC25C axis as a critical regulatory pathway in NSCLC.

11.
J Biomed Opt ; 29(Suppl 1): S11530, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38632983

ABSTRACT

Significance: In the photoacoustic (PA) technique, the laser irradiation in the time domain (i.e., laser pulse duration) governs the characteristics of PA imaging-it plays a crucial role in the optical-acoustic interaction, the generation of PA signals, and the PA imaging performance. Aim: We aim to provide a comprehensive analysis of the impact of laser pulse duration on various aspects of PA imaging, encompassing the signal-to-noise ratio, the spatial resolution of PA imaging, the acoustic frequency spectrum of the acoustic wave, the initiation of specific physical phenomena, and the photothermal-PA (PT-PA) interaction/conversion. Approach: By surveying and reviewing the state-of-the-art investigations, we discuss the effects of laser pulse duration on the generation of PA signals in the context of biomedical PA imaging with respect to the aforementioned aspects. Results: First, we discuss the impact of laser pulse duration on the PA signal amplitude and its correlation with the lateral resolution of PA imaging. Subsequently, the relationship between the axial resolution of PA imaging and the laser pulse duration is analyzed with consideration of the acoustic frequency spectrum. Furthermore, we examine the manipulation of the pulse duration to trigger physical phenomena and its relevant applications. In addition, we elaborate on the tuning of the pulse duration to manipulate the conversion process and ratio from the PT to PA effect. Conclusions: We contribute to the understanding of the physical mechanisms governing pulse-width-dependent PA techniques. By gaining insight into the mechanism behind the influence of the laser pulse, we can trigger the pulse-with-dependent physical phenomena for specific PA applications, enhance PA imaging performance in biomedical imaging scenarios, and modulate PT-PA conversion by tuning the pulse duration precisely.


Subject(s)
Light , Photoacoustic Techniques , Spectrum Analysis , Signal-To-Noise Ratio , Acoustics , Lasers , Photoacoustic Techniques/methods
12.
Phys Med Biol ; 69(10)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38593821

ABSTRACT

Objective. The textures and detailed structures in computed tomography (CT) images are highly desirable for clinical diagnosis. This study aims to expand the current body of work on textures and details preserving convolutional neural networks for low-dose CT (LDCT) image denoising task.Approach. This study proposed a novel multi-scale feature aggregation and fusion network (MFAF-net) for LDCT image denoising. Specifically, we proposed a multi-scale residual feature aggregation module to characterize multi-scale structural information in CT images, which captures regional-specific inter-scale variations using learned weights. We further proposed a cross-level feature fusion module to integrate cross-level features, which adaptively weights the contributions of features from encoder to decoder by using a spatial pyramid attention mechanism. Moreover, we proposed a self-supervised multi-level perceptual loss module to generate multi-level auxiliary perceptual supervision for recovery of salient textures and structures of tissues and lesions in CT images, which takes advantage of abundant semantic information at various levels. We introduced parameters for the perceptual loss to adaptively weight the contributions of auxiliary features of different levels and we also introduced an automatic parameter tuning strategy for these parameters.Main results. Extensive experimental studies were performed to validate the effectiveness of the proposed method. Experimental results demonstrate that the proposed method can achieve better performance on both fine textures preservation and noise suppression for CT image denoising task compared with other competitive convolutional neural network (CNN) based methods.Significance. The proposed MFAF-net takes advantage of multi-scale receptive fields, cross-level features integration and self-supervised multi-level perceptual loss, enabling more effective recovering of fine textures and detailed structures of tissues and lesions in CT images.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Image Processing, Computer-Assisted/methods , Humans , Neural Networks, Computer , Radiation Dosage , Signal-To-Noise Ratio
13.
J Agric Food Chem ; 72(15): 8823-8830, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578074

ABSTRACT

Emetic Bacillus cereus (B. cereus), which can cause emetic food poisoning and in some cases even fulminant liver failure and death, has aroused widespread concern. Herein, a universal and naked-eye diagnostic platform for emetic B. cereus based on recombinase polymerase amplification (RPA)-assisted CRISPR/Cas12a was developed by targeting the cereulide synthetase biosynthetic gene (cesB). The diagnostic platform enabled one-pot detection by adding components at the bottom and cap of the tube separately. The visual limit of detection of RPA-CRISPR/Cas12a for gDNA and cells of emetic B. cereus was 10-2 ng µL-1 and 102 CFU mL-1, respectively. Meanwhile, it maintained the same sensitivity in the rice, milk, and cooked meat samples even if the gDNA was extracted by simple boiling. The whole detection process can be finished within 40 min, and the single cell of emetic B. cereus was able to be recognized through enrichment for 2-5 h. The good specificity, high sensitivity, rapidity, and simplicity of the RPA-assisted CRISPR/Cas12a diagnostic platform made it serve as a potential tool for the on-site detection of emetic B. cereus in food matrices. In addition, the RPA-assisted CRISPR/Cas12a assay is the first application in emetic B. cereus detection.


Subject(s)
Emetics , Food Microbiology , Recombinases/genetics , Bacillus cereus/genetics , CRISPR-Cas Systems , Sensitivity and Specificity , Nucleotidyltransferases/genetics
14.
Front Microbiol ; 15: 1372069, 2024.
Article in English | MEDLINE | ID: mdl-38577684

ABSTRACT

Introduction: Hepatitis E virus (HEV), with heightened virulence in immunocompromised individuals and pregnant women, is a pervasive threat in developing countries. A globaly available vaccine against HEV is currently lacking. Methods: We designed a multi-epitope vaccine based on protein ORF2 and ORF3 of HEV using immunoinformatics. Results: The vaccine comprised 23 nontoxic, nonallergenic, soluble peptides. The stability of the docked peptide vaccine-TLR3 complex was validated by molecular dynamic simulations. The induction of effective cellular and humoral immune responses by the multi-peptide vaccine was verified by simulated immunization. Discussion: These findings provide a foundation for future HEV vaccine studies.

15.
Microbiol Resour Announc ; : e0124123, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38682770

ABSTRACT

Bacillus cereus, a class of facultative aerobic gram-positive bacteria, is frequently isolated from soil, growing plants, and the intestinal tract of insects and mammals. Here, we report the complete genome sequence of B. cereus A01, whose total genome length is 6,097,808 bp, with a GC content of 34.92%.

16.
Microbiol Spectr ; 12(5): e0405623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38563743

ABSTRACT

Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE: We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress.


Subject(s)
Codonopsis , Klebsiella , Rhizosphere , Soil Microbiology , Klebsiella/genetics , Klebsiella/enzymology , Klebsiella/drug effects , Klebsiella/growth & development , Codonopsis/genetics , Codonopsis/growth & development , Codonopsis/microbiology , Plant Development , Rhizoctonia/growth & development , Rhizoctonia/genetics , Rhizoctonia/drug effects , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Plant Growth Regulators/metabolism , Plant Diseases/microbiology , Soil/chemistry
17.
Environ Int ; 185: 108549, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447453

ABSTRACT

Universal access to clean fuels in household use is one explicit indicator of sustainable development while currently still billions of people rely on solid fuels for daily cooking. Despite of the recognized clean transition trend in general, disparities in household energy mix in different activities (e.g. cooking and heating) and historical trends remain to be elucidated. In this study, we revealed the historical changing trend of the disparity in household cooking and heating activities and associated carbon emissions in rural China. The study found that the poor had higher total direct energy consumption but used less modern energy, especially in cooking activities, in which the poor consumed 60 % more energy than the rich. The disparity in modern household energy use decreased over time, but conversely the disparity in total residential energy consumption increased due to the different energy elasticities as income increases. Though per-capita household CO2 and Black Carbon (BC) emissions were decreasing under switching to modern energies, the disparity in household CO2 and BC deepened over time, and the low-income groups emitted âˆ¼ 10 kg CO2 more compared to the high-income population. Relying solely on spontaneous clean cooking transition had limited impacts in reducing disparities in household energy and carbon emissions, whereas improving access to modern energy had substantial potential to reduce energy consumption and carbon emissions and its disparity. Differentiated energy-related policies to promote high-efficiency modern heating energies affordable for the low-income population should be developed to reduce the disparity, and consequently benefit human health and climate change equally.


Subject(s)
Air Pollution, Indoor , Carbon , Humans , Carbon Dioxide , Family Characteristics , Socioeconomic Factors , China , Rural Population , Cooking , Air Pollution, Indoor/analysis
18.
Nat Food ; 5(3): 251-261, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486126

ABSTRACT

Food consumption contributes to the degradation of air quality in regions where food is produced, creating a contrast between the health burden caused by a specific population through its food consumption and that faced by this same population as a consequence of food production activities. Here we explore this inequality within China's food system by linking air-pollution-related health burden from production to consumption, at high levels of spatial and sectorial granularity. We find that low-income groups bear a 70% higher air-pollution-related health burden from food production than from food consumption, while high-income groups benefit from a 29% lower health burden relative to their food consumption. This discrepancy largely stems from a concentration of low-income residents in food production areas, exposed to higher emissions from agriculture. Comprehensive interventions targeting both production and consumption sides can effectively reduce health damages and concurrently mitigate associated inequalities, while singular interventions exhibit limited efficacy.


Subject(s)
Air Pollution , Income , Poverty , Food , Agriculture
19.
Int Heart J ; 65(2): 339-348, 2024.
Article in English | MEDLINE | ID: mdl-38556341

ABSTRACT

Myocarditis, a severe inflammatory disease, is becoming a worldwide public health concern. This study aims to elucidate the effect of Chemokine (C C motif) receptor-like 2 (CCRL2) in experimental autoimmune myocarditis (EAM) occurrence and its potential regulatory mechanisms.EAM was simulated in a mouse model injected with α-myosin-heavy chain. The changes on EAM were assessed through histological staining of heart tissues, including measuring cardiac troponin I (cTnI), proinflammatory cytokines, transferase-mediated dUTP nick end labeling (TUNEL) assay, and cardiac function. Then, the heart tissues from the EAM mouse model and control groups were analyzed through transcriptome sequencing to identify the differential expressed genes (DEGs) and hub genes related to pyroptosis. Downregulation of CCRL2 further verified the function of CCRL2 on EAM and p21-activated kinase 1/NOD-like receptor protein 3 (PAK/NLRP3) signaling pathways in vivo.The EAM model was constructed successfully, with the heart weight/body weight ratio, serum level of cTnI, and concentrations of proinflammatory cytokines elevation. Moreover, cell apoptosis was also significantly increased. Transcriptome sequencing revealed 696 and 120 upregulated and downregulated DEGs, respectively. After functional enrichment, CCRL2 was selected as a potential target. Then, we verified that CCRL2 knockdown improved cardiac function, alleviated EAM occurrence, and reduced PAK/NLRP3 protein expression.CCRL2 may act as a novel potential treatment target in EAM by regulating the PAK1/NLRP3 pathway.


Subject(s)
Autoimmune Diseases , Myocarditis , Animals , Mice , Autoimmune Diseases/pathology , Cytokines , Disease Models, Animal , Myocarditis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Proteins , p21-Activated Kinases/genetics
20.
Photoacoustics ; 37: 100600, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38516294

ABSTRACT

The unique advantage of optical-resolution photoacoustic microscopy (OR-PAM) is its ability to achieve high-resolution microvascular imaging without exogenous agents. This ability has excellent potential in the study of tissue microcirculation. However, tracing and monitoring microvascular morphology and hemodynamics in tissues is challenging because the segmentation of microvascular in OR-PAM images is complex due to the high density, structure complexity, and low contrast of vascular structures. Various microvasculature extraction techniques have been developed over the years but have many limitations: they cannot consider both thick and thin blood vessel segmentation simultaneously, they cannot address incompleteness and discontinuity in microvasculature, there is a lack of open-access datasets for DL-based algorithms. We have developed a novel segmentation approach to extract vascularity in OR-PAM images using a deep learning network incorporating a weak signal attention mechanism and multi-scale perception (WSA-MP-Net) model. The proposed WSA network focuses on weak and tiny vessels, while the MP module extracts features from different vessel sizes. In addition, Hessian-matrix enhancement is incorporated into the pre-and post-processing of the input and output data of the network to enhance vessel continuity. We constructed normal vessel (NV-ORPAM, 660 data pairs) and tumor vessel (TV-ORPAM, 1168 data pairs) datasets to verify the performance of the proposed method. We developed a semi-automatic annotation algorithm to obtain the ground truth for our network optimization. We applied our optimized model successfully to monitor glioma angiogenesis in mouse brains, thus demonstrating the feasibility and excellent generalization ability of our model. Compared to previous works, our proposed WSA-MP-Net extracts a significant number of microvascular while maintaining vessel continuity and signal fidelity. In quantitative analysis, the indicator values of our method improved by about 1.3% to 25.9%. We believe our proposed approach provides a promising way to extract a complete and continuous microvascular network of OR-PAM and enables its use in many microvascular-related biological studies and medical diagnoses.

SELECTION OF CITATIONS
SEARCH DETAIL
...