Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669573

ABSTRACT

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Subject(s)
Aedes , Dengue Virus , Mosquito Vectors , Symbiosis , Zika Virus , Animals , Aedes/microbiology , Aedes/virology , Dengue Virus/physiology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Zika Virus/physiology , Dengue/transmission , Dengue/virology , Dengue/prevention & control , Gastrointestinal Microbiome , Acetobacteraceae/physiology , Female , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Flavivirus/physiology , Flavivirus/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology
2.
Article in English | MEDLINE | ID: mdl-38683642

ABSTRACT

Background: Kadipiro virus (KDV) is a species of the new 12 segmented RNA virus grouped under the genus Seadornavirus within the Reoviridae family. It has previously been isolated or detected from mosquito, Odonata, and bat feces in Indonesia, China, and Denmark, respectively. Here, we describe the isolation and characterization of a viral strain from mosquitoes in Yunnan Province, China. Methods: Mosquitoes were collected overnight using light traps in Shizong county, on July 17, 2023. Virus was isolated from the mosquito homogenate and grown using baby hamster kidney and Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full-genome sequences of the strain were determined by full-length amplification of cDNAs and sequenced using next-generation sequencing. Results: We isolated a viral strain (SZ_M48) from mosquitoes (Culex tritaeniorhynchus Giles) that caused cytopathogenic effects in C6/36 cells. AGE analysis indicated a genome consisting of 12 segments of double-stranded RNA that demonstrated a "6-5-1" pattern, similar to the migrating bands of KDV. Phylogenetic analysis based on the full-genome sequence revealed that SZ_M48 is more clustered with KDV isolates from Hubei and Shangdong in China than with Indonesian and Danish strains. The identity between SZ_M48 and SDKL1625 (Shandong, China) is slightly lower than that of QTM27331 (Hubei, China), and the identity with JKT-7075 (Indonesia) and 21164-6/M.dau/DK (Denmark) is the lowest. Conclusion: The full-genome sequence of the new KDV strain described in this study may be useful for surveillance of the evolutionary characteristics of KDVs. Moreover, these findings extend the knowledge about the genomic diversity, potential vectors, and the distribution of KDVs in China.

3.
Viruses ; 16(2)2024 01 24.
Article in English | MEDLINE | ID: mdl-38399951

ABSTRACT

Two strains of viruses, JC13C644 and JC13C673, were isolated from Culicoides tainanus collected in Jiangcheng County, Yunnan Province, situated along the border area shared by China, Laos, and Vietnam. JC13C644 and JC13C673 viruses can cause cytopathic effect (CPE) in mammalian cells BHK21 and Vero cells, and cause morbidity and mortality in suckling mice 48 h after intracerebral inoculation. Whole-genome sequencing was performed, yielding complete sequences for all 10 segments from Seg-1 (3942nt) to Seg-10 (810nt). Phylogenetic analysis of the sub-core-shell (T2) showed that the JC13C644 and JC13C673 viruses clustered with the Epizootic Hemorrhagic Disease Virus (EHDV) isolated from Japan and Australia, with nucleotide and amino acid homology of 93.1% to 98.3% and 99.2% to 99.6%, respectively, suggesting that they were Eastern group EHDV. The phylogenetic analysis of outer capsid protein (OC1) and outer capsid protein (OC2) showed that the JC13C644 and JC13C673 viruses were clustered with the EHDV-10 isolated from Japan in 1998, with the nucleotide homology of 98.3% and 98.5%, and the amino acid homology of 99.6% and 99.6-99.8%, respectively, indicating that they belong to the EHDV-10. Seroepidemiological survey results demonstrated that JC13C644 virus-neutralizing antibodies were present in 29.02% (177/610) of locally collected cattle serum and 11.32% (89/786) of goat serum, implying the virus's presence in Jiangcheng, Yunnan Province. This finding suggests that EHDV-10 circulates not only among blood-sucking insects in nature but also infects local domestic animals in China. Notably, this marks the first-ever isolation of the virus in China and its discovery outside of Japan since its initial isolation from Japanese cattle. In light of these results, it is evident that EHDV Serotype 10 exists beyond Japan, notably in the natural vectors of southern Eurasia, with the capacity to infect local cattle and goats. Therefore, it is imperative to intensify the surveillance of EHDV infection in domestic animals, particularly focusing on the detection and monitoring of new virus serotypes that may emerge in the region and pose risks to animal health.


Subject(s)
Ceratopogonidae , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Chlorocebus aethiops , Cattle , Animals , Mice , Hemorrhagic Disease Virus, Epizootic/genetics , Livestock , Serogroup , China/epidemiology , Phylogeny , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Capsid Proteins , Vero Cells , Goats , Amino Acids , Nucleotides
4.
Nat Commun ; 15(1): 1333, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351003

ABSTRACT

Commensal bacteria generate immensely diverse active metabolites to maintain gut homeostasis, however their fundamental role in establishing an immunotolerogenic microenvironment in the intestinal tract remains obscure. Here, we demonstrate that an understudied murine commensal bacterium, Dubosiella newyorkensis, and its human homologue Clostridium innocuum, have a probiotic immunomodulatory effect on dextran sulfate sodium-induced colitis using conventional, antibiotic-treated and germ-free mouse models. We identify an important role for the D. newyorkensis in rebalancing Treg/Th17 responses and ameliorating mucosal barrier injury by producing short-chain fatty acids, especially propionate and L-Lysine (Lys). We further show that Lys induces the immune tolerance ability of dendritic cells (DCs) by enhancing Trp catabolism towards the kynurenine (Kyn) pathway through activation of the metabolic enzyme indoleamine-2,3-dioxygenase 1 (IDO1) in an aryl hydrocarbon receptor (AhR)-dependent manner. This study identifies a previously unrecognized metabolic communication by which Lys-producing commensal bacteria exert their immunoregulatory capacity to establish a Treg-mediated immunosuppressive microenvironment by activating AhR-IDO1-Kyn metabolic circuitry in DCs. This metabolic circuit represents a potential therapeutic target for the treatment of inflammatory bowel diseases.


Subject(s)
Colitis , Firmicutes , Kynurenine , Humans , Animals , Mice , Kynurenine/metabolism , Lysine , Receptors, Aryl Hydrocarbon/metabolism , Colitis/chemically induced , Bacteria/metabolism , Immune Tolerance , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
5.
Microbiol Spectr ; 12(1): e0105023, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38051048

ABSTRACT

IMPORTANCE: Existing studies have found that there is a close relationship between human virome and numerous diseases, and diseases may affect the diversity and composition of the virome; at the same time, changes in the virome will in turn affect the onset and progression of the disease. However, the composition and functional capabilities of the gut virome associated with atherosclerotic cardiovascular disease (ACVD) have not been systematically investigated. To our knowledge, this is the first study investigating the gut virome in patients with ACVD. We characterized the structural changes in the gut virome of ACVD patients, which may facilitate additional mechanistic, diagnostic, and interventional studies of ACVD and related diseases.


Subject(s)
Bacteriophages , Cardiovascular Diseases , Humans , Virome
6.
Front Cell Infect Microbiol ; 13: 1283580, 2023.
Article in English | MEDLINE | ID: mdl-38035340

ABSTRACT

Introduction: Banna virus (BAV), a potential pathogen that may cause human encephalitis, is the prototype species of genus Seadornaviru within the family Reoviridae, and has been isolated from a variety of blood-sucking insects and mammals in Asia. Methods: Culicoides, Mosquitoes, and Ticks were collected overnight in Yunnan, China, during 2016-2023 using light traps. Virus was isolated from these collected blood-sucking insects and grown using Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full genome sequences of the BAVs were determined by full-length amplification of cDNAs (FLAC) and sequenced using next-generation sequencing. Results: In this study, 13 strains BAV were isolated from Culicoides, Mosquitoes and Ticks. Their viral genome consisted of 12 segments of double-stranded RNA (dsRNA), and with three distinct distribution patterns. Sequence analysis showed that Seg-5 of four strains (SJ_M46, SJ_M49, JC_M19-13 and JC_C24-13) has 435 bases nucleotide sequence insertions in their ORF compared to other BAVs, resulting in the length of Seg-5 up to 2128 nt. There are 34 bases sequence deletion in Seg-9 of 3 strains (WS_T06, MS_M166 and MS_M140). Comparison of the coding sequences of VP1, VP2, VP5, VP9 and VP12 of the 13 BAV strains, the results show that VP1, VP2 and VP12 are characterised by high levels of sequence conservation, while VP9 is highly variable, under great pressure to adapt and may be correlated with serotype. While also variable, VP5 appears to be under less adaptive pressure than VP9. Additionally, phylogenetic analysis indicates that the 13 BAV strains locate in the same evolutionary cluster as BAVs isolated from various blood-sucking insects, and are clustered according to geographical distribution. Conclusion: The data obtained herein would be beneficial for the surveillance of evolutionary characteristics of BAV in China and neighboring countries as well as extend the knowledge about its genomic diversity and geographic distribution.


Subject(s)
Aedes , Ceratopogonidae , Coltivirus , Ticks , Animals , Aedes/genetics , Ceratopogonidae/genetics , China , Coltivirus/genetics , Genome, Viral , Mammals/genetics , Phylogeny , Ticks/genetics
7.
PLoS One ; 18(7): e0287266, 2023.
Article in English | MEDLINE | ID: mdl-37494347

ABSTRACT

Biting midges of the genus Culicoides are important in both medicine and veterinary medicine because their blood-feeding regime enable them to transmit a variety of pathogens. In this study, the morphological characteristics of the new species of Culicoides (Sinocoides) jiangchengensis Wang et Liu sp. nov are described and compared with the other species of female Culicoides in the subgenus Sinocoides. Three morphological characteristics of C. jiangchengensis, such as without sensory pit in 3rd palpus segment, sensilla coeloconica on flagellomeres 1,9-13, and m1 and m2 cell of the wings with pale spots, were different from the other nine species of culicoides in subgenus Sinocoides. Genetically, C. jiangchengensis are most closely related to C. malipoensis, but they were located in different branches and the minimum interspecific distance between them was 12.6%. In addition, a checklist of 10 species in the subgenus Sinocoides Chu, 1983 (Diptera: Ceratopogonidae: Culicoides) in China, including the new species C. jiangchengensis Wang et Liu sp. nov., is provided, and an updated key to species of the subgenus Sinocoides Chu, 1983 was presented.


Subject(s)
Ceratopogonidae , Animals , Female , Phylogeny , Sensilla , China
8.
PLoS Negl Trop Dis ; 17(6): e0011374, 2023 06.
Article in English | MEDLINE | ID: mdl-37319258

ABSTRACT

Biting midges are one of the most common hematophagous insects. They are capable of transmitting a wide range of arboviruses and have a significant impact on public health and veterinary medicine. Herein, from midge samples collected in 2013 in Yunnan, China, one sample induced a cell cytopathic effect (CPE) in BHK-21, MA104, and PK15 cell lines. Next-generation sequencing data, RACE and PCR determined the genome sequence of the sample and designated as an Oya virus (OYAV) isolate SZC50. Phylogenetic analysis of the sample revealed that it was cluster into viruses from species Orthobunyavirus catqueense. The open reading frames of S, M, and L segment of OYAV SZC50 were closest to those of OYAV SC0806. Moreover, 831 serum samples (736 pigs, 45 cattle, and 50 sheep) were gathered from 13 cities in Yunnan Province to detect neutralizing antibody of OYAV SZC50. A significant proportion of OYAV SZC50 antibody (more than 30%) was found in Yunnan pig populations, with the positive rate of OYAV SZC50 antibody in pigs from Malipo reaching 95%. To determine the pathogenicity of OYAV SZC50, we chose three animal models: specific pathogen-free Kunming mice, C57BL/6 mice lacking the interferon α/ß receptor, and chicken embryos. At 5, 6, and 7 days post-infection, all adult and suckling C57BL/6 mice, and specific pathogen-free suckling Kunming mice were dead. Our finding was expanding the knowledge about the infection and pathogenic risk of the neglected virus in the Orthobunyavirus.


Subject(s)
Ceratopogonidae , Orthobunyavirus , Mice , Chick Embryo , Animals , Cattle , Swine , Sheep , Animals, Domestic , China/epidemiology , Phylogeny , Seroepidemiologic Studies , Mice, Inbred C57BL , Orthobunyavirus/genetics
9.
Vector Borne Zoonotic Dis ; 23(6): 331-340, 2023 06.
Article in English | MEDLINE | ID: mdl-37184906

ABSTRACT

Background: Dengue virus (DENV) can be divided into four serotypes-DENV-1, DENV-2, DENV-3, and DENV-4. In humans, infection leads to dengue fever (DF), dengue hemorrhagic fever, and dengue shock syndrome, both widely prevalent in tropical and subtropical regions. In 2019, a severe outbreak of DF occurred in Xishuangbanna, Yunnan province. Objective: To investigate the etiology and genotype of the causative agents of this severe dengue outbreak in Xishuangbanna. Methods: Between October and November 2019, the sera of patients clinically diagnosed with DF were collected in the first People's Hospital of Xishuangbanna. RNA was extracted from the sera and amplified by RT-PCR with flavivirus primers. Flavivirus-positive sera were then used to inoculate Aedes albopictus cells (C6/36); viral RNA was extracted from these cells, amplified, and sequenced with DENV E gene-specific primers. Sequence splicing and nucleotide homology genetic evolution analysis were carried out by biological software (DNAStar). Unique mutations in the E genes of isolated DENV were analyzed by SWISS-MODEL and PyMOL. Results: Of the 60 samples collected from DF patients, 39 tested positively with flavivirus primers. The DENV was isolated from 25 of the 39 positive seras, of which 20 showed cytopathic effects (CPE) and 5 were no CPE. In these 25 isolated nucleic acids, 21 strains of DENV-1, 3 strains of DENV-2, and 1 strain of DENV-3 were identified according to the sequence of E protein. In the four unique mutations (D52, Y149, L312, T386), D52 and Y149 in the E protein of DENV-1 were predicted to be exposed on the surface of the prefusion conformation. Conclusion: The 2019 outbreak of DF in Xishuangbanna area of Yunnan Province consists of at least three serotypes of DENV-1, DENV-2, and DENV-3, and the sources of these virus strains are of mixed and complicated origin.


Subject(s)
Dengue Virus , Dengue , Humans , Animals , Dengue Virus/genetics , Dengue/veterinary , Phylogeny , China/epidemiology , Disease Outbreaks , Evolution, Molecular , Genotype
10.
BMC Microbiol ; 23(1): 138, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37202719

ABSTRACT

BACKGROUND: The gut microbiota plays an essential role in maintaining gut homeostasis and improving performance, with the composition of microbial communities visibly differing across different laying stages in hens and significantly correlating with egg production. To gain further insights into the association between microbial community characteristics and laying periods in Hy-Line variety brown and Isa brown laying hens, we conducted a 16S rRNA amplicon sequencing survey. RESULTS: Our result revealed the diversity of bacteria in the early laying period was commonly higher than peak, and in Hy-Line variety brown laying hens were generally higher than Isa brown. Principal coordinate analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA) revealed that the structure and composition of the gut microbiota of laying hens exhibited significant differences among different groups. Phylum Firmicutes, Bacteroidota, Proteobacteria, and Fusobacteriota were found that dominant in the host's feces. Therein, the abundance of Fusobacteriota was higher in the peak period than in the early period, while the abundance of Cyanobacteria in the early period was higher in two breeds of hens. Furthermore, random forest based on machine learning showed that there were several distinctly abundant genera, which can be used as potential biomarkers to differentiate the different groups of laying periods and breeds. In addition, the prediction of biological function indicated the existing discrepancy in microbial function among the microbiota of four groups. CONCLUSIONS: Our findings offer new insights into the bacterial diversity and intestinal flora composition of different strains of laying hens during various laying periods, contributing significantly to the improvement of production performance and the prevention of chicken diseases.


Subject(s)
Cyanobacteria , Gastrointestinal Microbiome , Microbiota , Animals , Female , Gastrointestinal Microbiome/genetics , Chickens/microbiology , RNA, Ribosomal, 16S/genetics , Cyanobacteria/genetics
11.
Front Immunol ; 14: 1156397, 2023.
Article in English | MEDLINE | ID: mdl-37090719

ABSTRACT

Introduction: Despite Toxoplasma gondii infection leading to dysbiosis and enteritis, the function of gut microbiota in toxoplasmosis has not been explored. Methods: Here, shotgun metagenomics was employed to characterize the composition and function of mouse microbial community during acute and chronic T. gondii infection, respectively. Results: The results revealed that the diversity of gut bacteria was decreased immediately after T. gondii infection, and was increased with the duration of infection. In addition, T. gondii infection led to gut microbiota dysbiosis both in acute and chronic infection periods. Therein, several signatures, including depression of Firmicutes to Bacteroidetes ratio and infection-enriched Proteobacteria, were observed in the chronic period, which may contribute to aggravated gut inflammation and disease severity. Functional analysis showed that a large amount of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and carbohydrate-active enzymes (CAZy) family displayed distinct variation in abundance between infected and healthy mice. The lipopolysaccharide biosynthesis related pathways were activated in the chronic infection period, which might lead to immune system imbalance and involve in intestinal inflammation. Moreover, microbial and functional spectrums were more disordered in chronic than acute infection periods, thus implying gut microbiota was more likely to participate in disease process in the chronically infected mice, even exacerbated immunologic derangement and disease progression. Discussion: Our data indicate that the gut microbiota plays a potentially important role in protecting mice from T. gondii infection, and contributes to better understand the association between gut microbiota and toxoplasmosis.


Subject(s)
Gastrointestinal Microbiome , Toxoplasma , Toxoplasmosis , Animals , Mice , Persistent Infection , Dysbiosis , Inflammation
12.
Microb Pathog ; 179: 106097, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37062491

ABSTRACT

Giardia duodenum (G. duodenalis) can cause giardiasis and infect a variety of hosts. So far, there have been no detailed data regarding the positive rate of G. duodenalis in sheep and goats in China. Here, a systematic literature review was carried out to investigate the epidemiology of G. duodenalis in sheep and goats in China. To perform the meta-analysis, the databases CNKI, VIP, WanFang, PubMed, Web of science and ScienceDirect were employed for screening studies related to the prevalence of G. duodenalis in sheep and goats in China. The total prevalence of G. duodenalis in sheep and goats was estimated to be 7.00% (95% CI: 4.00-10.00). In the age subgroup, the prevalence of G. duodenalis in sheep and goats of >12 months (11.29%; 95% CI: 8.08-14.97) was higher than that in sheep and goats of ≤12 months (7.57%; 95% CI: 3.95-12.24). An analysis based on seasons showed that the prevalence of G. duodenalis in sheep and goats was higher in summer (11.90%; 95% CI: 0.50-35.05) than that in other seasons. The prevalence of G. duodenalis in sheep and goats after 2016 was 8.57% (95% CI: 5.34-11.79), which was higher than others. The highest prevalence of G. duodenalis in sheep and goats was 13.06% (95% CI: 6.26-19.86) recorded in Southwestern China. The prevalence of Giardia infection in sheep (7.28%; 95% CI: 2.30-14.73) was higher than that in goats (5.43%; 95% CI: 2.73-8.98). The NOAA's National Center for Environmental Information (https://gis.ncdc.noaa.gov/maps/ncei/cdo/monthly) was used to extract relevant geoclimatic data (latitude, longitude, elevation, temperature, precipitation, humidity, and climate). By analyzing the data of each subgroup, it was shown that region, genetype, and climate were potential risk factors for giardiasis prevalence in sheep and goats. Based on the analysis of common factors and geographical factors, it is recommended to strengthen effective management measures (e.g. ventilation and disinfection in warm and humid areas) and formulate relevant policies according to local conditions. Breeders should strengthen the detection of G. duodenalis in sheep and goats, customize corresponding control measures according to the diet and living habits of sheep and goats, and strengthen the protection of sheep and lamb calves, so as to reduce the incidence rate and reduce the economic loss of China's animal husbandry.


Subject(s)
Giardia lamblia , Giardiasis , Animals , Sheep , Giardiasis/epidemiology , Giardiasis/veterinary , Goats , Prevalence , China/epidemiology , Feces , Genotype
13.
Front Immunol ; 14: 1154380, 2023.
Article in English | MEDLINE | ID: mdl-37063855

ABSTRACT

Introduction: Ankylosing spondylitis (AS), a chronic autoimmune disease, has been linked to the gut bacteriome. Methods: To investigate the characteristics of the gut virome in AS, we profiled the gut viral community of 193 AS patients and 59 healthy subjects based on a metagenome-wide analysis of fecal metagenomes from two publicly available datasets. Results: AS patients revealed a significant decrease in gut viral richness and a considerable alteration of the overall viral structure. At the family level, AS patients had an increased abundance of Gratiaviridae and Quimbyviridae and a decreased abundance of Drexlerviridae and Schitoviridae. We identified 1,004 differentially abundant viral operational taxonomic units (vOTUs) between patients and controls, including a higher proportion of AS-enriched Myoviridae viruses and control-enriched Siphoviridae viruses. Moreover, the AS-enriched vOTUs were more likely to infect bacteria such as Flavonifractor, Achromobacter, and Eggerthellaceae, whereas the control-enriched vOTUs were more likely to be Blautia, Ruminococcus, Collinsella, Prevotella, and Faecalibacterium bacteriophages. Additionally, some viral functional orthologs differed significantly in frequency between the AS-enriched and control-enriched vOTUs, suggesting the functional role of these AS-associated viruses. Moreover, we trained classification models based on gut viral signatures to discriminate AS patients from healthy controls, with an optimal area under the receiver operator characteristic curve (AUC) up to 0.936, suggesting the clinical potential of the gut virome for diagnosing AS. Discussion: This work provides novel insight into the AS gut virome, and the findings may guide future mechanistic and therapeutic studies for other autoimmune diseases.


Subject(s)
Autoimmune Diseases , Bacteriophages , Gastrointestinal Microbiome , Spondylitis, Ankylosing , Viruses , Humans , Virome , Bacteriophages/genetics
14.
Vector Borne Zoonotic Dis ; 23(1): 35-43, 2023 01.
Article in English | MEDLINE | ID: mdl-36595376

ABSTRACT

Background: In August 2013, a virus strain (DH13M98) was isolated from Culex tritaeniorhynchus Giles collected in Mangshi, the southwestern border area of Yunnan Province, China. The virus replicated and caused cytopathic effects (CPE) in Aedes albopictus (C6/36) cells, but not in baby hamster Syrian kidney (BHK-21) cells. Materials and Methods: Agarose gel electrophoresis (AGE) analysis revealed that the DH13M98 virus was a 10-segment double-stranded RNA (dsRNA) virus, with a "1-1-1-2-1-1-2-1" pattern. The full genome of the DH13M98 virus was sequenced by full-length amplification of complementary DNAs (FLAC). Results: Phylogenetic analysis of the viral RNA-dependent RNA polymerase (Pol), major subcore-shell (T2), and major core-surface (T13) protein showed that DH13M98 clustered with Umatilla virus (UMAV), and the amino acid (aa) sequences of DH13M98 shared more than 89.5% (Pol), 95% (T2), and 91.1% (T13) identity with UMAV. However, the aa identity of outer capsid protein one (OC1) of DH13M98 with other UMAV was 57.1-79.2%, suggesting that DH13M98 was UMAV, but distinct from other strains of UMAV from the United States, Japan, and Germany at OC1, and it may be a high variant strain of UMAV, even a new serotype. Conclusion: This is the first isolation of UMAV in China, which enriches the resources of virus species in China and provides new insights into the genetic diversity and geographical distribution of the virus.


Subject(s)
Culex , Orbivirus , Cricetinae , Animals , China , Phylogeny , Orbivirus/genetics , Base Sequence
15.
Microbiol Spectr ; 11(1): e0242422, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36625628

ABSTRACT

The fungal community, also known as mycobiota, plays pivotal roles in host nutrition and metabolism and has potential to cause disease. However, knowledge of the gut fungal structure in Caprinae is quite limited. In this study, the composition and diversity of the gut mycobiota of Caprinae animals from different geographical locations (Anhui, Jilin, Guangxi, Shandong, Shanxi, and Tibet) were comprehensively characterized by analyzing the internal transcribed spacer 2 (ITS-2) sequences of the fungal community. The results showed that Ascomycota and Basidiomycota were the dominant phyla, which, respectively, accounted for 90.86 to 95.27% and 2.58 to 7.62% of sequences in samples from each region. Nonetheless, the structure of the gut mycobiota was largely different in Caprinae animals in the different provinces. Therein, Sporormiaceae and Thelebolaceae were the dominant fungal families in the samples from Tibet, whereas their abundance was generally low in other regions. The intestinal diversity of individuals from Guangxi was higher than that in other regions. In addition, there were 114 differential genera among all regions. Finally, the co-occurrence network revealed 285 significant correlations in cross-family pairs in the guts of Caprinae animals, which contained 149 positive and 136 negative relationships, with 96 bacterial and 86 fungal participants at the family level. This study has improved the understanding of the mycobiota of ruminants and provided support for the improvement in animal health and productivity. IMPORTANCE In this study, we elucidated and analyzed the structure of the gut mycobiota of Caprinae animals from different regions. This study revealed differences in the structure of the gut mycobiota among Caprinae animals from different geographical environments. Based on previous findings, correlations between fungal and bacterial communities were analyzed. This study adds to previous research that has expanded the present understanding of the gut microbiome of Caprinae animals.


Subject(s)
Ascomycota , Basidiomycota , Gastrointestinal Microbiome , Mycobiome , Animals , Fungi/genetics , China , Ascomycota/genetics
16.
Virus Genes ; 59(2): 223-233, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36441333

ABSTRACT

In July 2019, a novel viral strain (JH2019C603) was isolated from sentinel cattle in Jinghong City, in the subtropical region of Yunnan Province, China. The virus replicated and caused cytopathological effects in both Aedes albopictus (C6/36) and Baby Hamster Syrian Kidney (BHK-21) cells. Agarose gel electrophoresis analysis revealed a viral genome comprised of 10 segments of double-stranded RNA, with a 1-2-2-1-1-1-1-1 migration pattern. Complete genome sequences of the JH2019C603 virus were determined through full-length cDNA amplification. Phylogenetic analysis based on the amino acid (aa) sequences of RNA-dependent RNA Polymerase (Pol), Major subcore (T2) and Major core-surface (T13) showed that JH2019C603 clustered with Yonaguni orbivirus (YONOV) from Japan, with aa identities relative to YONOV of 97.7% (Pol), 99.0% (T2) and 98.5% (T13). However, phylogenetic analysis based on the aa sequences of the outer capsid protein one and two (OC1 and OC2) showed that JH2019C603 formed an independent branch in the phylogenetic tree, and its aa identity with YONOV was only 55.4% (OC1) and 80.8% (OC2), respectively. Compared with the prototype of YONOV, a notable sequence deletion was observed in the 3' non-coding region of NS1, with the NS1 of JH2019C603 encoded within segment 7 (Seg-7), in contrast to YONOV, which contains NS1 in Seg-6. These results indicate that JH2019C603 belongs to the YONOV lineage and might be a novel serotype or a highly variant strain of YONOV. These findings will facilitate the identification of new isolates and clarify their geographical distribution, epidemiology, genetic diversity and possible disease associations.


Subject(s)
Orbivirus , Cricetinae , Cattle , Animals , China , Phylogeny , Serogroup , Amino Acid Sequence , Genome, Viral/genetics , RNA, Viral/genetics
17.
Front Cell Infect Microbiol ; 13: 1283216, 2023.
Article in English | MEDLINE | ID: mdl-38274733

ABSTRACT

Introduction: Culicoides plays a crucial role as an insect vector in the field of veterinary medicine. The transmission of significant viruses such as bluetongue virus (BTV) and African horse sickness virus (AHSV) by this insect poses a substantial threat, leading to the development of severe diseases in domestic animals. This study aimed to explore the Culicoides species, identify their blood-meal sources, and assess the presence of BTV and AHSV carried by Culicoides in Yuanyang County, Yunnan Province. The aim was to gain insights into the potential vectors of these two viruses and elucidate their potential roles in the transmission of pathogens. Methods: The midges were collected from cattle (Bos indicus), pig (Sus scrofa), and goat (Capra hircus) pens in Yuanyang County, Yunnan Province in June 2020. Initial identification of midges was conducted through morphological characteristics, followed by molecular identification using the cytochrome C oxidase subunit I (COI) gene. The determination of Culicoides blood-meal sources was accomplished using specific primers targeting the cytochrome b (Cyt b) gene from potential hosts. BTV and AHSV RNA were identified in Culicoides pools through the application of reverse transcriptase PCR and quantitative real-time PCR. Nucleotide homology and phylogenetic analysis were performed using MegAlign (DNAStar) and Mega 6.0 software. Results: A total of 6,300 Culicoides, consisting of C. oxystoma, C. arakawai, C. imicola, and C. innoxius, were collected from cattle, pigs, and goat pens. The engorgement rates for these species were 30.2%, 54.6%, 75%, and 66.7%, respectively. In the cattle pen, the prevailing species is C. oxystoma (100%). In the pig pen, C. arakawai dominates (70%), with C. oxystoma following at 30%. In the goat pen, C. imicola holds the majority (45.45%), trailed by C. oxystoma (25%), C. innoxius (20.45%), and C. arakawai (9.09%). These Culicoides species were identified as feeding on cattle, pigs, goats, chickens (Gallus gallus), and humans (Homo sapiens). The positivity rates for BTV were 20.00% and 11.54% in blood-fed specimens of C. imicola and C. oxystoma, respectively. Conversely, the positivity rates for BTV in non-blood-fed specimens were 0.00% and 6.67% for C. imicola and C. oxystoma, respectively. BTV was not detected in C. arakawai and C. innoxius. The specimens (YY86) from C. imicola that tested positive for BTV had the closest genetic relationship to YTS-4 isolated from Mangshi, Yunnan Province in 1996. All test results for the nucleic acid of AHSV were negative. Conclusion: The study reveals variations in the species distribution, community composition, blood sucking rate, and blood-feeding sources of Culicoides across different habitats. Notably, C. imicola and C. oxystoma emerge as potential vectors for the transmission of BTV in local animals. Accordingly, this investigation provides crucial insights that can serve as a valuable reference for the prevention and control of BTV in local animals, particularly from the perspective of vector management.


Subject(s)
Bluetongue virus , Bluetongue , Ceratopogonidae , Sheep , Humans , Cattle , Animals , Bluetongue virus/genetics , Phylogeny , China , Chickens , Goats
18.
Microbiol Spectr ; 10(6): e0221122, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36321901

ABSTRACT

Most microbiome studies regarding the ruminant digestive tract have focused on the rumen microbiota, whereas only a few studies were performed on investigating the gut microbiota of ruminants, which limits our understanding of this important component. Herein, the gut microbiota of 30 Caprinae animals (sheep and goats) from six provinces in China was characterized using ultradeep (>100 Gbp per sample) metagenome shotgun sequencing. An inventory of Caprinae gut microbial species containing 5,046 metagenomic assembly genomes (MAGs) was constructed. Particularly, 2,530 of the genomes belonged to uncultured candidate species. These genomes largely expanded the genomic repository of the current microbes in the Caprinae gut. Several enzymes and biosynthetic gene clusters encoded by these Caprinae gut species were identified. In summary, our study extends the gut microbiota characteristics of Caprinae and provides a basis for future studies on animal production and animal health. IMPORTANCE We constructed a microbiota catalog containing 5,046 MAGs from Caprinae gut from six regions of China. Most of the MAGs do not overlap known databases and appear to be potentially new species. We also characterized the functional spectrum of these MAGs and analyzed the differences between different regions. Our study enriches the understanding of taxonomic, functional, and metabolic diversity of Caprinae gut microbiota. We are confident that the manuscript will be of utmost interest to a wide range of readers and be widely applied in future research.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Sheep , Animals , Gastrointestinal Microbiome/genetics , Bacteria/genetics , Bacteria/metabolism , Genome, Bacterial , Metagenomics , Genome, Microbial , Ruminants
19.
Front Cell Infect Microbiol ; 12: 1037586, 2022.
Article in English | MEDLINE | ID: mdl-36389171

ABSTRACT

Toxoplasmosis is an important zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii). However, the functions of circRNAs and miRNAs in response to T. gondii infection in the livers of mice at acute and chronic stages remain unknown. Here, high-throughput RNA sequencing was performed for detecting the expression of circRNAs and miRNAs in livers of mice infected with 20 T. gondii cysts at the acute and chronic stages, in order to understand the potential molecular mechanisms underlying hepatic toxoplasmosis. Overall, 265 and 97 differentially expressed (DE) circRNAs were found in livers at the acute and chronic infection stages in comparison with controls, respectively. In addition, 171 and 77 DEmiRNAs were found in livers at the acute and chronic infection stages, respectively. Functional annotation showed that some immunity-related Gene ontology terms, such as "positive regulation of cytokine production", "regulation of T cell activation", and "immune receptor activity", were enriched at the two infection stages. Moreover, the pathways "Valine, leucine, and isoleucine degradation", "Fatty acid metabolism", and "Glycine, serine, and threonine metabolism" were involved in liver disease. Remarkably, DEcircRNA 6:124519352|124575359 was significantly correlated with DEmiRNAs mmu-miR-146a-5p and mmu-miR-150-5p in the network that was associated with liver immunity and pathogenesis of disease. This study revealed that the expression profiling of circRNAs in the livers was changed after T. gondii infection, and improved our understanding of the transcriptomic landscape of hepatic toxoplasmosis in mice.


Subject(s)
MicroRNAs , Toxoplasma , Toxoplasmosis , Mice , Animals , RNA, Circular , MicroRNAs/genetics , MicroRNAs/metabolism , Toxoplasmosis/genetics , Liver/metabolism , Transcriptome , Toxoplasma/genetics
20.
Foodborne Pathog Dis ; 19(10): 675-685, 2022 10.
Article in English | MEDLINE | ID: mdl-36036962

ABSTRACT

Echinococcosis is a foodborne parasitic zoonosis caused by the larvae of Echinococcus. This disease can affect goats and other mammals. In this study, a systematic review and meta-analysis for echinococcosis in global goats were performed based on the following five databases (China National Knowledge Infrastructure [CNKI], VIP Chinese Journal Database, Wanfang Data, PubMed, and ScienceDirect). In total, 108,197 samples were collected. The global prevalence of echinococcosis in goats was identified to be 10.85% (3217/108,197). The prevalence of echinococcosis in goats was 6.16% (1369/22,208) and 13.27% (874/5932) in South America and Africa, respectively. The prevalence of echinococcosis in goats before 2010 (9.76%; 112/713) was significantly higher than that from 2010 to 2014 (1.44%; 45/32,145) or after 2014 (2.95%; 154/3889). The prevalence of echinococcosis in goats aged <12 months (4.48%; 70/2911) was higher than that in goats aged ≥12 months (2.88%; 36/819). We also investigated the effects of geographical factors and climates on the prevalence of echinococcosis in goats. The results showed that the prevalence of echinococcosis was higher in the areas with high altitude and cold climate. This meta-analysis indicated that echinococcosis was ubiquitous in goats. Thus, we should improve the feeding conditions for goats, and strengthen the control measures of echinococcosis epidemic in goats, with the aims of reducing the economic losses of animal husbandry and providing protection for humans in the aspects of food security and health.


Subject(s)
Echinococcosis , Goats , Animals , Humans , Goats/parasitology , Prevalence , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcosis/parasitology , Zoonoses/epidemiology , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...