Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16275, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009739

ABSTRACT

This study presented a comprehensive computational fluid dynamics-based model for fused filament fabrication (FFF) three-dimensional (3D) printing multiphase and multiphysics coupling. A model based on the framework of computational fluid dynamics was built, utilizing the front-tracking method for high precision of multiphase material interfaces, a fully resolved simulation at the mesoscale explores the underlying physical mechanism of the self-supported horizontal printing. The study investigated the influence of printing temperature and velocity on the FFF process, exhibiting a certain self-supporting forming ability over a specific range. The results indicated that during the printing of large-span horizontal extension structures, the bridge deck material transitions from initial straight extension to sagging deformation, ultimately adopting a curved shape. The straight extension distance is inversely proportional to the depth of the sagging deformation. Additionally, the study revealed that printing temperature primarily affected the curing time of the molten material, while printing velocity fundamentally affected the relaxation time of both thermal and dynamic characteristics of the material.

2.
Materials (Basel) ; 15(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35591329

ABSTRACT

Lattice structures have excellent mechanical properties and can be designed by changing the cellular structure. However, the computing scale is extremely large to directly analyze a large-size structure containing a huge number of lattice cells. Evaluating the equivalent mechanical properties instead of the complex geometry of such lattice cells is a feasible way to deal with this problem. This paper aims to propose a series of formulas, including critical structural and material parameters, to fast evaluate the equivalent mechanical properties of lattice structures. A reduced-order model based on the finite element method and beam theory was developed and verified by comparing it with the corresponding full model. This model was then applied to evaluate the equivalent mechanical properties of 25 types of lattice cells. The effects of the material Young's modulus and Poisson's ratio, strut diameter, cell size, and cell number on those equivalent mechanical properties were investigated and discussed, and the linear relationship with the material parameters and the non-linear relationship with the structural parameters were found. Finally, a series of analytical-fitting formulas involving the structural and material parameters were obtained, which allows us to fast predict the equivalent mechanical properties of the lattice cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...