Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 243: 120312, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37453402

ABSTRACT

Advanced oxidation processes are commonly considered one of the most effective techniques to degrade refractory organic pollutants, but the limitation of a single process usually makes it insufficient to achieve the desired treatment. This work introduces, for the first time, a highly-efficient coupled advanced oxidation process, namely Electro-Oxidation-Persulfate-Electro-Fenton (EO-PS-EF). Leveraging the EO-PS-EF tri-coupling system, diverse contaminants can be highly efficiently removed with the help of reactive hydroxyl and sulfate radicals generated via homogeneous and heterogeneous bi-catalysis, as certified by radical quenching and electron spin resonance. Concerning degradation of tetracycline (TC), the EO-PS-EF system witnessed a fast pseudo-first-order reaction kinetic constant of 2.54 × 10-3 s-1, ten times that of a single EO system and three-to-four times that of a binary system (EO-PS or EO-EF). In addition, critical parameters (e.g., electrolyte, pH and temperature) are systematically investigated. Surprisingly, after 100 repetitive trials TC removal can still reach 100% within 30 min and no apparent morphological changes to electrode materials were observed, demonstrating its long-term stability. Finally, its universality was demonstrated with effective degradation of diverse refractory contaminants (i.e., antibiotics, dyes and pesticides).


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Hydroxyl Radical , Tetracycline , Sulfates , Catalysis , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Hydrogen Peroxide
2.
ACS Appl Nano Mater ; 5(12): 17711-17720, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36583121

ABSTRACT

We report on the development of hybrid organic-inorganic material-based flexible memristor devices made by a fast and simple electrochemical fabrication method. The devices consist of a bilayer of poly(methyl methacrylate) (PMMA) and Te-rich GeSbTe chalcogenide nanoscale thin films sandwiched between Ag top and TiN bottom electrodes on both Si and flexible polyimide substrates. These hybrid memristors require no electroforming process and exhibit reliable and reproducible bipolar resistive switching at low switching voltages under both flat and bending conditions. Multistate switching behavior can also be achieved by controlling the compliance current (CC). We attribute the switching between the high resistance state (HRS) and low resistance state (LRS) in the devices to the formation and rupture of conductive Ag filaments within the hybrid PMMA/GeSbTe matrix. This work provides a promising route to fabricate flexible memory devices through an electrodeposition process for application in flexible electronics.

3.
ACS Omega ; 5(24): 14679-14688, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32596605

ABSTRACT

We report the thermoelectric properties of Bi2Te3 thin films electrodeposited from the weakly coordinating solvent dichloromethane (CH2Cl2). It was found that the oxidation of porous films is significant, causing the degradation of its thermoelectric properties. We show that the morphology of the film can be improved drastically by applying a short initial nucleation pulse, which generates a large number of nuclei, and then growing the nuclei by pulsed electrodeposition at a much lower overpotential. This significantly reduces the oxidation of the films as smooth films have a smaller surface-to-volume ratio and are less prone to oxidation. X-ray photoelectron spectroscopy (XPS) shows that those films with Te(O) termination show a complete absence of oxygen below the surface layer. A thin film transfer process was developed using polystyrene as a carrier polymer to transfer the films from the conductive TiN to an insulating layer for thermoelectrical characterization. Temperature-dependent Seebeck measurements revealed a room-temperature coefficient of -51.7 µV/K growing to nearly -100 µV/K at 520 °C. The corresponding power factor reaches a value of 88.2 µW/mK2 at that temperature.

4.
ACS Nano ; 12(7): 7388-7396, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29969230

ABSTRACT

In electrodeposition the key challenge is to obtain better control over nanostructure morphology. Currently, a lack of understanding exists concerning the initial stages of nucleation and growth, which ultimately impact the physicochemical properties of the resulting entities. Using identical location scanning transmission electron microscopy (STEM), with boron-doped diamond (BDD) serving as both an electron-transparent TEM substrate and electrode, we follow this process, from the formation of an individual metal atom through to a crystalline metal nanoparticle, under potential pulsed conditions. In doing so, we reveal the importance of electrochemically driven atom transport, atom cluster formation, cluster progression to a nanoparticle, and the mechanism by which neighboring particles interact during growth. Such information will help formulate improved nucleation and growth models and promote wider uptake of electrodeposited structures in a wide range of societally important applications. This type of measurement is possible in the TEM because the BDD possesses inherent stability, has an extremely high thermal conductivity, is electron beam transparent, is free from contamination, and is robust enough for multiple deposition and imaging cycles. Moreover, the platform can be operated under conditions such that we have confidence that the dynamic atom events we image are truly due to electrochemically driven deposition and no other factors, such as electron-beam-induced movement.

5.
Chem Commun (Camb) ; 54(24): 3053-3056, 2018 Mar 25.
Article in English | MEDLINE | ID: mdl-29513314

ABSTRACT

A strong relationship between the surface structure and the redox activity of Li2O2 is visualized directly using scanning electrochemical cell microscopy, employing a dual-barrel nanopipette containing a unique gel polymer electrolyte. These measurements reveal considerable local heterogeneity with significantly enhanced electrochemical activity at toroidal Li2O2 structures when compared to the conformal layer that is usually formed on the cathode of Li-O2 batteries.

6.
Protein Expr Purif ; 135: 78-82, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28526454

ABSTRACT

Chymosin is widely used in the dairy industry, and much is produced through recombinant DNA in organisms such as bacteria and tobacco. In this study, we used a new transgenic method to express caprine chymosin in corn seeds with lower cost and better storage capability. The recombinant chymosin protein was successfully expressed at an average level of 0.37 mg/g dry weight, which is 0.27% of the total soluble protein in the corn seed. Prochymosin can be activated to produce a chymosin protein with the ability to induce clotting in milk, similar to the commercial protein. The activity of the purified recombinant chymosin was as high as 178.5 U/mg. These results indicate that we have successfully established a technology for generating corn seed-derived caprine chymosin for potential use in the dairy industry.


Subject(s)
Chymosin/biosynthesis , Genetic Vectors/chemistry , Plants, Genetically Modified , Seeds/genetics , Zea mays/genetics , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Animals , Chymosin/genetics , Chymosin/isolation & purification , Chymosin/pharmacology , Cloning, Molecular , Enzyme Assays , Flocculation/drug effects , Food Technology , Gene Expression , Genetic Vectors/metabolism , Globulins/genetics , Globulins/metabolism , Goats , Kinetics , Milk/chemistry , Milk/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Seeds/enzymology , Transformation, Genetic , Zea mays/enzymology
7.
Faraday Discuss ; 172: 421-38, 2014.
Article in English | MEDLINE | ID: mdl-25427195

ABSTRACT

Thermoelectrochemical experiments can reveal significant information about electrochemical processes compared to ambient only measurements. Typical thermoelectrochemistry is performed using resistively heated wires or laser heated electrodes, both of which can suffer drawbacks associated with the electrode material employed. Boron doped diamond (BDD) is ideal for thermoelectrochemical investigations due to its extremely high thermal conductivity and diffusivity, extreme resistance to thermal ablation (can withstand laser power densities, Pd, of GW cm(-2) for nanosecond pulses) and excellent electrochemical properties (low background currents and wide potential window). In this paper we describe the use of a pulsed laser technique to heat the rear of a 1 mm diameter conducting BDD disc electrode, which drives electrochemical solution reactions at the front face. Maximum electrode temperatures of 90.0 °C were recorded experimentally and confirmed by finite element modelling (FEM). The effect of laser pulsed heating (maximum 3.8 kW cm(-2); 10 ms on and 90 ms off) on the cyclic voltammetric response of two fast (reversible) outer sphere electron transfer redox mediators (Ru(NH3)6(3+/2+) and IrCl6(2-/3-)) are investigated. In particular, we observe pulsed increases in the current, which increase with increasing Pd. The potential of the peak current is shifted positively for the Ru(NH3)6(3+/2+) couple (in accordance with a positive temperature coefficient, ß, +0.68 mV K(-1)) and negatively for the IrCl6(3-/2-) couple (ß = -0.48 mV K(-1)). Scanning backwards, in contrast to that observed for a macrodisc electrode in ambient solution, a cathodic peak is again observed for Ru(NH3)6(3+/2+) and an anodic peak for IrCl6(3-/2-) couple. We attribute this response to the entropy of the redox reaction and the time-dependant change in mass transport due to the induced thermal gradients at the electrode/electrolyte interface. The observed responses are in qualitative agreement with FEM simulations.

8.
Anal Chem ; 86(11): 5238-44, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24814161

ABSTRACT

Highly doped, boron doped diamond (BDD) is an electrode material with great potential, but the fabrication of suitable electrodes in a variety of different geometries both at the macro- and microscale, with an insulating material that does not compromise the material properties of the BDD, presents technical challenges. In this Technical Note, a novel solution to this problem is presented, resulting in the fabrication of coplanar macro- and microscale BDD electrodes, insulated by insulating diamond, at the single and multiple, individually addressable level. Using a laser micromachining approach, the required electrode(s) geometry is machined into an insulating diamond substrate, followed by overgrowth of high quality polycrystalline BDD (pBDD) and polishing to reveal approximately nanometer roughness, coplanar all-diamond structures. Electrical contacting is possible using both top and bottom contacts, where the latter are defined using the laser to produce non-diamond-carbon (NDC) in the vicinity of the back side of the BDD. We present the fabrication of individually addressable ring, band, and disk electrodes with minimum, reproducible controlled dimensions of 50 µm (limited only by the laser system employed). The pBDD grown into the insulating diamond recesses is shown to be free from NDC and possesses excellent electrochemical properties, in terms of extended solvent windows, electrochemical reversibility, and capacitance.

SELECTION OF CITATIONS
SEARCH DETAIL
...