Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 12(12): 1138, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880209

ABSTRACT

Inducing homologous-recombination (HR) deficiency is an effective strategy to broaden the indications of PARP inhibitors in the treatment of triple-negative breast cancer (TNBC). Herein, we find that repression of the oncogenic transcription factor FOXM1 using FOXM1 shRNA or FOXM1 inhibitor FDI-6 can sensitize BRCA-proficient TNBC to PARP inhibitor Olaparib in vitro and in vivo. Mechanistic studies show that Olaparib causes adaptive resistance by arresting the cell cycle at S and G2/M phases for HR repair, increasing the expression of CDK6, CCND1, CDK1, CCNA1, CCNB1, and CDC25B to promote cell cycle progression, and inducing the overexpression of FOXM1, PARP1/2, BRCA1/2, and Rad51 to activate precise repair of damaged DNA. FDI-6 inhibits the expression of FOXM1, PARP1/2, and genes involved in cell cycle control and DNA damage repair to sensitize TNBC cells to Olaparib by blocking cell cycle progression and DNA damage repair. Simultaneously targeting FOXM1 and PARP1/2 is an innovative therapy for more patients with TNBC.


Subject(s)
Pyridines/pharmacokinetics , Thiophenes/pharmacokinetics , Triple Negative Breast Neoplasms , Cell Cycle/genetics , Cell Division , Cell Line, Tumor , DNA Damage , Forkhead Box Protein M1/genetics , Humans , Phthalazines/pharmacology , Phthalazines/therapeutic use , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
2.
J Med Chem ; 64(23): 17413-17435, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34813314

ABSTRACT

Targeting poly(ADP-ribose) polymerase1/2 (PARP1/2) is a promising strategy for the treatment of pancreatic cancer with breast cancer susceptibility gene (BRCA) mutation. Inducing the deficiency of homologous recombination (HR) repair is an effective way to broaden the indication of PARP1/2 inhibitor for more patients with pancreatic cancer. Bromodomain-containing protein 4 (BRD4) repression has been reported to elevate HR deficiency. Therefore, we designed, synthetized, and optimized a dual PARP/BRD4 inhibitor III-16, with a completely new structure and high selectivity against PARP1/2 and BRD4. III-16 showed favorable synergistic antitumor efficacy in pancreatic cancer cells and xenografts by arresting cell cycle progression, inhibiting DNA damage repair, and promoting autophagy-associated cell death. Moreover, III-16 reversed Olaparib-induced acceleration of cell cycle progression and recovery of DNA repair. The advantages of III-16 over Olaparib suggest that dual PARP/BRD4 inhibitors are novel and promising agents for the treatment of advanced pancreatic cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Drug Discovery , Pancreatic Neoplasms/drug therapy , Phthalazines/therapeutic use , Piperazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Transcription Factors/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Autophagy/drug effects , DNA Damage , DNA Repair , Gene Expression Regulation, Neoplastic/drug effects , Genes, BRCA1 , Humans , Pancreatic Neoplasms/pathology , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...