Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Cancer ; 176: 1-12, 2022 11.
Article in English | MEDLINE | ID: mdl-36182805

ABSTRACT

AIM: Proxalutamide is a novel second-generation non-steroidal androgen receptor (AR) antagonist. This study aimed to evaluate the preliminary efficacy and safety of proxalutamide in patients with AR-positive metastatic breast cancer (AR+ mBC). METHODS: In this open-label, dose-expansion, multicentre phase Ib trial, patients with AR+ mBC (immunohistochemistry [IHC] ≥1%) received proxalutamide orally once daily. Two proxalutamide dose cohorts (cohort A: 200 mg; cohort B: 300 mg) were sequentially investigated. Primary endpoints were disease control rate (DCR) at 8 and 16 weeks and recommended phase II dose (RP2D). RESULTS: Forty-five patients with three median lines (range, 1-13) prior systemic therapy were enrolled (cohort A, n = 30; cohort B, n = 15). Among 39 evaluable patients, DCR at 8 and 16 weeks was 25.6% (95% confidence interval [CI], 11.9-39.4%), with 26.9% in cohort A and 23.1% in cohort B. No patient achieved partial response or complete response. Proxalutamide 200 mg/day was determined as RP2D. The 6-month progression-free survival (PFS) rate was 19.6% (95% CI, 10.2-37.5%). In the triple-negative subgroup, DCR at 8 weeks was 38.5%, with median PFS of 9.1 months (95% CI, 7.8-NA) in those who achieved response at 8 weeks (n = 5). Most common grade 3/4 adverse events were aspartate aminotransferase increase (8.9%) and γ-glutamyltransferase increase (8.9%). By biomarker analysis, patients with moderate AR expression of IHC (26%-75%), PIK3CA pathogenic mutations, or <60 ng/ml cell-free DNA yield showed longer PFS. CONCLUSION: Proxalutamide showed promising anti-tumour activity with good tolerability in patients with heavily pretreated AR+ mBC, supporting further investigation. TRIAL REGISTRATION: This clinical study was prospectively registered at chinadrugtrials.org.cn (Identifier: CTR20170757) and clinical trials.gov (Identifier: NCT04103853).


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Treatment Outcome , Androgen Receptor Antagonists/therapeutic use , Biomarkers
2.
Opt Express ; 30(2): 2353-2363, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209377

ABSTRACT

Surface-enhanced Raman scattering (SERS) fiber probes are useful for remote and online detection of harmful molecules using the SERS effect. In this study, a 3-dimensional (3D) SERS optical fiber probe is proposed. The formation of the 3D optical fiber probe mainly included three steps: construction of monolayer polystyrene (PS) spheres as a mask on the end face of the fiber, reactive ion etching (RIE) for PS spheres and fibers, and metal sputtering deposition. Compared with flat surface fiber probes, these 3D SERS fiber probes are composed of ordered nanocolumn arrays, which have the advantages of a simple manufacturing process, low cost, high sensitivity, and good stability. The structures of the 3D SERS fiber probe can be well controlled by changing the size of the PS sphere and etching time. The formation of the nanocolumn was studied using time evolution experiments. The obtained fiber SERS probe has good stability and high sensitivity for the in situ detection of 4-aminothiophenol (4-ATP) in solution. Therefore, these 3D SERS fiber probes have potential applications in harmful molecules for real-time detection.

3.
Breast Cancer Res Treat ; 189(3): 725-736, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34392453

ABSTRACT

PURPOSE: To evaluate GT0918, a 2nd-generation AR antagonist, for its AR down-regulation activity among breast cancer patients. METHODS: The effect of GT0918 on AR protein expression was evaluated in AR expression breast cancer cells and in breast cancer xenograft model. A 3 + 3 phase I dose-escalation study was launched in Peking University Cancer Hospital. The endpoints included dose finding, safety, pharmacokinetics, and antitumor activity. RESULTS: GT0918 was demonstrated to effectively suppress the expression of AR protein and the growth of AR-positive breast cancer tumors in mouse xenograft tumor models. All patients treated with GT0918 were at a QD dose-escalation of five dose levels from 100 to 500 mg. The most common treatment-related AEs of any grade were asthenia, anemia, decreased appetite, increased blood cholesterol, increased blood triglycerides, decreased white blood cell count, and increased low-density lipoprotein. Grade 3 AEs were fatigue (2 of 18, 11.1%), aspartate aminotransferase increase (1 of 18, 5.6%), alanine aminotransferase increase (1 of 18, 5.6%), and neutrophil count decrease (1 of 18, 5.6%). Clinical benefit rate (CBR) in 16 weeks was 23.1% (3/13). Among 7 AR-positive patients, 6 can evaluate efficacy, and 2 completed 23.5- and 25-cycle treatment, respectively (as of 2020/1/20). PK parameters showed a fast absorption profile of GT0918 in the single-dose study. GT0918 and its major metabolite reached steady-state serum concentration levels at day 21 after multiple dosing. CONCLUSION: GT0918 can effectively inhibit AR-positive breast cancer tumor growth. GT0918 was demonstrated well tolerated with a favorable PK profile. The suitable dose of GT0918 was 500 mg QD and may provide clinical benefits for AR-positive mBC.


Subject(s)
Androgen Receptor Antagonists , Breast Neoplasms , Animals , Breast Neoplasms/drug therapy , Female , Humans , Mice , Oxazoles , Receptors, Androgen , Thiohydantoins
4.
ACS Omega ; 5(49): 31730-31737, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33344826

ABSTRACT

This paper mainly presents a facile and cost-effective method to achieve large-scale ZnO nanocap (ZnO NC)-ordered arrays with a controllable amount of Au nanoparticles (Au NPs) decorated on their surface. The preparation process includes the construction of polystyrene nanosphere (PS) mask, metal deposition, and annealing process. The Au NPs/ZnO NCs have apparent hierarchical structure. Interestingly, the size and number of Au NPs can be controlled by changing the time of Au deposition and the diameter of PSs. Moreover, the Au NP/ZnO NC arrays can be used as a substrate to detect harmful dye molecules based on surface-enhanced Raman scattering (SERS) effect, and show ultrahigh sensitivity with a limit of detection (LoD) of 10-10 M for crystal violet (CV) molecules. In addition, the above substrate has achieved reusable detection due to their excellent photocatalytic degradation performance for harmful molecules. The finite difference time-domain (FDTD) simulation results have revealed that SERS "hot spots" are almost distributed at the junctions of Au NPs and ZnO NCs. The above results show that the composite substrates have a good prospect in practical applications in the future.

5.
Cell Reprogram ; 17(6): 441-52, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26580119

ABSTRACT

Since the first report of induced pluripotent stem cells (iPSCs) by Takahashi and Yamanaka, numerous attempts have been made to derive iPSCs from other species via the ectopic expression of defined factors. Sheep iPSCs (siPSCs) have significant potential for biotechnology and agriculture. Although several groups have described siPSCs, the reprogramming efficiency was extremely low. The exogenous transgenes could be not silenced in the iPSCs, which hampered their development and application. Here, we report that p53 knockdown and antisilencing function 1A (ASF1A) overexpression promoted iPSC generation from sheep kidney cells (SKCs). Compared with transduction with eight human defined transcription factors (Oct4, Sox2, Klf4, c-Myc, Nanog, Lin28, hTERT, and SV40LT), the additional introduction of p53 RNA interference (RNAi) and/or ASF1A in the presence of small-molecule compounds [vitamin C (Vc) and valproic acid (VPA)] greatly improved the efficiency of sheep iPSC generation. The siPSCs exhibited morphological features similar to mouse embryonic stem cells (ESCs) and were positive for alkaline phosphatase and, pluripotent marker genes (Oct4, Nanog, Sox2, Rex1, TRA-1-60, TRA-1-81, and E-cadherin). Furthermore, these cells exhibited a normal karyotype of 54 chromosomes and were able to differentiate into all three germ layers both in vitro and in vivo. Moreover, the exogenous genes were silenced in siPSCs when p53 small hairpin RNA (shRNA) and ASF1A were added. Our results may help to reveal the role of p53 and ASF1A in sheep somatic cell reprogramming and provide an efficient approach to reprogramming sheep somatic cells.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Induced Pluripotent Stem Cells/cytology , Kidney/cytology , Tumor Suppressor Protein p53/metabolism , Animals , Cell Differentiation , Cellular Reprogramming , Gene Silencing , Immunohistochemistry , Karyotyping , Kruppel-Like Factor 4 , Lentivirus/genetics , Mice , RNA Interference , RNA, Small Interfering/metabolism , Real-Time Polymerase Chain Reaction , Sheep , Transcription Factors/metabolism , Transgenes
6.
J Gen Virol ; 96(Pt 1): 85-94, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25234643

ABSTRACT

MicroRNAs (miRNAs) are a class of short endogenous RNA molecules with the ability to control development, autophagy, apoptosis and the stress response in eukaryotes by pairing with partially complementary sites in the 3' UTRs of targeted genes. Recent studies have demonstrated that miRNAs serve as critical effectors in intricate networks of host-pathogen interactions. Notably, we found that Bos taurus bta-miR-29b (referred to as miR-29b herein) was significantly upregulated >2.3-fold in bovine viral diarrhoea virus (BVDV) strain NADL-infected Madin-Darby bovine kidney (MDBK) cells 6 h post-infection compared with normal MDBK cells. However, the roles of miR-29b in BVDV infection and pathogenesis remain unclear. Here, we report the inhibitory effects of miR-29b on BVDV NADL replication and viral infection-related autophagy. miR-29b overexpression mediated by miRNA precursor-expressing lentivirus resulted in the attenuation of BVDV NADL infection-related autophagy by directly downregulating the intracellular expression levels of two key autophagy-associated proteins, ATG14 and ATG9A. Moreover, ATG14 and ATG9A overexpression rescue not only reversed miR-29b-inhibited autophagy, but also increased BVDV NADL replication. In previous studies, we found that the early stages of autophagy contributed to BVDV NADL replication in MDBK cells and that the inhibition of autophagy repressed BVDV NADL replication, which was also proved in the present study. Collectively, our results establish a novel link between miR-29b and viral replication, and also provide a new pathway for the intimate interaction between host cells and pathogens.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Autophagy/genetics , Diarrhea Viruses, Bovine Viral/genetics , Lentivirus/genetics , MicroRNAs/genetics , Virus Replication/genetics , Animals , Bovine Virus Diarrhea-Mucosal Disease/genetics , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Cell Line , DNA Replication/genetics , Dogs , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Madin Darby Canine Kidney Cells
7.
Microb Pathog ; 76: 61-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25245007

ABSTRACT

Macroautophagy (autophagy) is an evolutionarily conserved control process that maintains cellular homeostasis in eukaryotic cells. Autophagy principally serves an adaptive role to degrade dysfunctional proteins and to clean damaged organelles in response to pathogenic, viral, or microbial infection, nutrient deprivation and endoplasmic reticulum (ER) stress. In previous study, we showed bovine viral diarrhea virus (BVDV) NADL infection induced autophagy and significantly elevated the expression levels of autophagy-related genes, Beclin1 and ATG14, at 12 h post-infection in MDBK cells. However, the specific mechanisms involved in controlling autophagic activity remain unclear. Here, we investigate the effects of BVDV NADL envelope glycoproteins overexpression on inducing autophagy. The results show that viral envelope glycoproteins E(rns) and E2 overexpression mediated by lentivirus increase the formation of autophagosome, the percentage of GFP-LC3 puncta-positive cells and the expression levels of Beclin1 and ATG14. Whereas E1 overexpression doesn't affect autophagic activity. Collectively, these findings suggest that the viral envelope glycoproteins E(rns) and E2 are involved in inducing autophagy, and provide a mechanistic insight into the regulation of autophagy in viral infected cells.


Subject(s)
Autophagy , Diarrhea Viruses, Bovine Viral/physiology , Glycoproteins/metabolism , Host-Pathogen Interactions , Viral Envelope Proteins/metabolism , Adaptor Proteins, Vesicular Transport/analysis , Animals , Apoptosis Regulatory Proteins/analysis , Cattle , Cell Line , Gene Expression Profiling
8.
Can J Microbiol ; 60(7): 455-60, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24965127

ABSTRACT

MicroRNAs (miRNAs) are small, endogenous, noncoding RNA molecules that serve as powerful regulators of multiple cellular processes, including apoptosis, differentiation, growth, and proliferation. Bovine viral diarrhea virus (BVDV) contributes significantly to health-related economic losses in the beef and dairy industries. Although BVDV-induced apoptosis correlates with increased intracellular viral RNA accumulation and with bta-miR-29b (miR-29b) expression upregulation in Madin-Darby bovine kidney (MDBK) cells infected with BVDV strain NADL, the role of miR-29b in regulating BVDV-infection-related apoptosis remains unexplored. Here, we report that miR-29b serves as a new miRNA regulating apoptosis. We showed that miR-29b target sequences were present in the 3' untranslated regions of 2 key apoptosis regulators mRNAs, cysteine aspartases-7 (caspase-7) and nuclear apoptosis-inducing factor 1 (NAIF1). Indeed, upon miRNA overexpression, both mRNA and protein levels of caspase-7 and NAIF1 were decreased. We further found that miR-29b attenuated apoptosis by directly regulating intracellular levels of caspase-7 and NAIF1. Moreover, apoptosis blockage by miR-29b was rescued upon co-infection of MDBK cells with lentiviruses expressing caspase-7 and NAIF1. Importantly, miR-29b decreased BVDV NADL envelope glycoprotein E1 mRNA levels and suppressed viral replication. These studies advance our understanding of the mechanisms of miRNAs in mediating the cells combating viral infections.


Subject(s)
Apoptosis Inducing Factor/genetics , Apoptosis , Caspase 7/genetics , Diarrhea Viruses, Bovine Viral/physiology , MicroRNAs/physiology , Virus Replication/genetics , Animals , Apoptosis/genetics , Apoptosis Inducing Factor/metabolism , Caspase 7/metabolism , Cattle , Cell Line , Diarrhea Viruses, Bovine Viral/genetics , Humans , MicroRNAs/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Messenger/physiology , RNA, Viral/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...