Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(21): 15629-15636, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38764382

ABSTRACT

Ferroelectricity in two-dimensional (2D) systems generally arises from phonons and has been widely investigated. On the contrary, electronic ferroelectricity in 2D systems has been rarely studied. Using first-principles calculations, the ferroelectric behavior of the buckled blue SiSe monolayer under strain are explored. It is found that the direction of the out-of-plane ferroelectric polarization can be reversed by applying an in-plane strain. And such polarization switching is realized without undergoing geometric inversion. Besides, the strain-triggered polarization reversal emerges in both biaxial and uniaxial strain cases, indicating it is an intrinsic feature of such a system. Further analysis shows that the polarization switching is the result of the reversal of the magnitudes of the positive and negative charge center vectors. And the variation of buckling is found to play an important role, which results in the switch. Moreover, a non-monotonic variation of band gap with strain is revealed. Our findings throws light on the investigation of novel electronic ferroelectric systems.

2.
Nanoscale ; 16(9): 4841-4850, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38314941

ABSTRACT

Two-dimensional van der Waals layered materials have attracted extensive attention in the field of low-dimensional ferroelectricity, on account of their readily delaminated structure and high-density information storage advantages. Here, we report the sliding ferroelectricity and moiré effects on the ferroelectricity in Janus bilayer MoSSe based on first-principles calculations. We focus on the changes of in-plane and out-of-plane polarizations due to sliding, and the calculations demonstrate that the in-plane and out-of-plane polarizations can be switched simultaneously by sliding. In addition, in moiré-twisted bilayer MoSSe, the complex stacking pattern and significant interlayer distance suppress the interlayer charge transfer, and the ferroelectric polarization is effectively suppressed. The polarization in the large-angle twisted structure is small but its direction can be adjusted by changing the twist angle. Our results emphasize the importance of low-dimensional ferroelectrics in van der Waals structures and pave a way for the search of sliding ferroelectric materials, as well as enriching the research on the ferroelectricity of large-angle twisted structures.

3.
Front Psychol ; 13: 841926, 2022.
Article in English | MEDLINE | ID: mdl-36106044

ABSTRACT

With the development of deep neural networks, automatic music composition has made great progress. Although emotional music can evoke listeners' different auditory perceptions, only few research studies have focused on generating emotional music. This paper presents EmotionBox -a music-element-driven emotional music generator based on music psychology that is capable of composing music given a specific emotion, while this model does not require a music dataset labeled with emotions as previous methods. In this work, pitch histogram and note density are extracted as features that represent mode and tempo, respectively, to control music emotions. The specific emotions are mapped from these features through Russell's psychology model. The subjective listening tests show that the Emotionbox has a competitive performance in generating different emotional music and significantly better performance in generating music with low arousal emotions, especially peaceful emotion, compared with the emotion-label-based method.

4.
Indian J Microbiol ; 62(3): 374-383, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35974910

ABSTRACT

Purpose: To investigated the changes of gut microbiome and fecal metabolome during anti-tuberculosis chemotherapy with isoniazid (H)-rifampin (R)-pyrazinamide (Z)-ethambutol (E). Patients and methods: (1) In this study, we recruited 168 stool specimens from 49 healthy volunteers without M. tuberculosis (Mtb), 30 healthy volunteers with latently infected by Mtb, 41 patients with active tuberculosis (ATB), 28 patients with 2-month HRZE treatment and 20 patients with 2-month HRZE followed by 4-month HR treatment. (2) We used 16S rRNA sequencing and an untargeted Liquid Chromatograph Mass Spectrometer-based metabolomics to investigate the changes of gut microbiome and the alteration of fecal metabolome, respectively, during anti-TB chemotherapy. Results: Mtb infection can reduce the diversity of intestinal flora of ATB patients and change their taxonomic composition, while the diversity of intestinal flora of ATB patients were restored during anti-TB chemotherapy. Especially, family Veillonellacea and Bateroidaceae and their genera Veillonella and Bacteroides significantly increased in the gut microbiota during anti-TB chemotherapy. Additionally, Mtb infection dynamically regulates fecal metabolism in ATB patients during anti-TB chemotherapy. Interestingly, the altered abundance of fecal metabolites correlated with the altered gut microbiota, especially the change of gut Clostridium, Bacteroides and Prevotella was closely related to the change of fecal metabolites such as Trans-4-Hydroxy-L-proline and Genistein caused by Mtb infection or anti-TB chemotherapy. Conclusion: Anti-TB chemotherapy with HRZE can disrupt both gut microbiotas and metabolome in ATB patients. Some specific genera and metabolites are depleted or enriched during anti-TB chemotherapy. Therefore, revealing potential relevance between gut microbiota and anti-TB chemotherapy will provide potential biomarkers for evaluating the therapeutic efficacy in ATB patients. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01003-2.

5.
Front Psychol ; 12: 656052, 2021.
Article in English | MEDLINE | ID: mdl-34149541

ABSTRACT

The ability to localize a sound source is very important in our daily life, specifically to analyze auditory scenes in complex acoustic environments. The concept of minimum audible angle (MAA), which is defined as the smallest detectable difference between the incident directions of two sound sources, has been widely used in the research fields of auditory perception to measure localization ability. Measuring MAAs usually involves a reference sound source and either a large number of loudspeakers or a movable sound source in order to reproduce sound sources at a large number of predefined incident directions. However, existing MAA test systems are often cumbersome because they require a large number of loudspeakers or a mechanical rail slide and thus are expensive and inconvenient to use. This study investigates a novel MAA test method using virtual sound source synthesis and avoiding the problems with traditional methods. We compare the perceptual localization acuity of sound sources in two experimental designs: using the virtual presentation and real sound sources. The virtual sound source is reproduced through a pair of loudspeakers weighted by vector-based amplitude panning (VBAP). Results show that the average measured MAA at 0° azimuth is 1.1° and the average measured MAA at 90° azimuth is 3.1° in a virtual acoustic system, meanwhile the average measured MAA at 0° azimuth is about 1.2° and the average measured MAA at 90° azimuth is 3.3° when using the real sound sources. The measurements of the two methods have no significant difference. We conclude that the proposed MAA test system is a suitable alternative to more complicated and expensive setups.

6.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921035

ABSTRACT

Acquired treatment resistance is an important cause of death in prostate cancer, and this study aimed to explore the mechanisms of chemotherapy resistance in prostate cancer. We employed castration-resistant prostate cancer (CRPC), neuroendocrine prostate cancer (NEPC), and chemotherapy-resistant prostate cancer datasets to screen for potential target genes. The Cancer Genome Atlas (TCGA) was used to detect the correlation between the target genes and prognosis and clinical characteristics. Nei endonuclease VIII-like 3 (NEIL3) knockdown cell lines were constructed with RNA interference. Prostate cancer cells were treated with enzalutamide for the androgen deprivation therapy (ADT) model, and with docetaxel and cisplatin for the chemotherapy model. Apoptosis and the cell cycle were examined using flow cytometry. RNA sequencing and western blotting were performed in the knockdown Duke University 145 (DU145) cell line to explore the possible mechanisms. The TCGA dataset demonstrated that high NEIL3 was associated with a high T stage and Gleason score, and indicated a possibility of lymph node metastasis, but a good prognosis. The cell therapy models showed that the loss of NEIL3 could promote the chemotherapy resistance (but not ADT resistance) of prostate cancer (PCa). Flow cytometry revealed that the loss of NEIL3 in PCa could inhibit cell apoptosis and cell cycle arrest under cisplatin treatment. RNA sequencing showed that the knockdown of NEIL3 changes the expression of neuroendocrine-related genes. Further western blotting revealed that the loss of NEIL3 could significantly promote the phosphorylation of ATR serine/threonine kinase (ATR) and ATM serine/threonine kinase (ATM) under chemotherapy, thus initiating downstream pathways related to DNA repair. In summary, the loss of NEIL3 promotes chemotherapy resistance in prostate cancer, and NEIL3 may serve as a diagnostic marker for chemotherapy-resistant patients.


Subject(s)
Drug Resistance, Neoplasm , N-Glycosyl Hydrolases/deficiency , Prostatic Neoplasms/drug therapy , Androgen Antagonists/pharmacology , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Docetaxel/pharmacology , Docetaxel/therapeutic use , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/metabolism , Neoplasm Invasiveness , Neurosecretory Systems/drug effects , Neurosecretory Systems/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , S Phase/drug effects
7.
Chemistry ; 20(15): 4264-72, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24644237

ABSTRACT

Besides studies on the mineralization process, research on the demineralization of minerals provides another way to understand the crystallization mechanism of biominerals and fabricate crystals with complicated morphologies. The formation of ordered arrays of c-axis-oriented calcite microneedles with a tri-symmetric structure and lengths of more than 20 µm was realized on a large scale for the first time through anisotropic dissolution of calcite substrates in undersaturated aqueous solution in the presence of ammonium salts. The lengths and the aspect ratios of the calcite microneedles can be tuned by simply changing the concentrations of the ammonium salts and the dissolution time. The shape of the transverse cross sections of the calcite microneedles obtained in the presence of NH4 Cl and NH4 Ac is almost regularly triangular. The tri-symmetric transverse cross-section geometry of the calcite microneedles could be attributed to the tri-symmetric feature of rhombohedral calcite atomic structures, the synergetic interactions between electrostatic interaction of ammonium ions and dangling surface carbonate groups, and the ion incorporation of halide ions.


Subject(s)
Calcium Carbonate/chemistry , Ammonium Compounds/chemistry , Ions/chemistry , Nanostructures/chemistry , Static Electricity , Water/chemistry , X-Ray Diffraction
8.
ACS Appl Mater Interfaces ; 3(2): 597-605, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21344913

ABSTRACT

A novel approach combining biomimetic mineralization and bioadhesion is proposed to prepare robust and versatile organic-inorganic hybrid microcapsules. More specifically, these microcapsules are fabricated by sequential deposition of inorganic layer and organic layer on the surface of CaCO(3) microparticles, followed by the dissolution of CaCO(3) microparticles using EDTA. During the preparation process, protamine induces the hydrolysis and condensation of titania or silica precursor to form the inorganic layer or the biomineral layer. The organic layer or bioadhesive layer was formed through the rapid, spontaneous oxidative polymerization of dopamine into polydopamine (PDA) on the surface of the biomineral layer. There exist multiple interactions between the inorganic layer and the organic layer. Thus, the as-prepared organic-inorganic hybrid microcapsules acquire much higher mechanical stability and surface reactivity than pure titania or pure silica microcapsules. Furthermore, protamine/titania/polydopamine hybrid microcapsules display superior mechanical stability to protamine/silica/polydopamine hybrid microcapsules because of the formation of Ti(IV)-catechol coordination complex between the biomineral layer and the bioadhesive layer. As an example of application, three enzymes are respectively immobilized through physical encapsulation in the lumen, in situ entrapment within the wall and chemical attachment on the out surface of the hybrid microcapsules. The as-constructed multienzyme system displays higher catalytic activity and operational stability. Hopefully, the approach developed in this study will evolve as a generic platform for facile and controllable preparation of organic-inorganic hybrid materials with different compositions and shapes for a variety of applications in catalysis, sensor, drug/gene delivery.


Subject(s)
Capsules/chemistry , Nanocomposites/chemistry , Titanium/chemistry , Biomimetic Materials , Calcium Carbonate , Capsules/chemical synthesis , Dopamine , Drug Stability , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Microscopy, Electron , Microtechnology , Photoelectron Spectroscopy , Polymerization , Spectrometry, X-Ray Emission , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...