Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 475(2225): 20190312, 2019 05.
Article in English | MEDLINE | ID: mdl-31236063

ABSTRACT

[This corrects the article DOI: 10.1098/rspa.2018.0547.].

2.
Proc Math Phys Eng Sci ; 475(2223): 20180547, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31007545

ABSTRACT

In this study, we establish an inclusive paradigm for the homogenization of scalar wave motion in periodic media (including the source term) at finite frequencies and wavenumbers spanning the first Brillouin zone. We take the eigenvalue problem for the unit cell of periodicity as a point of departure, and we consider the projection of germane Bloch wave function onto a suitable eigenfunction as descriptor of effective wave motion. For generality the finite wavenumber, finite frequency homogenization is pursued in R d via second-order asymptotic expansion about the apexes of 'wavenumber quadrants' comprising the first Brillouin zone, at frequencies near given (acoustic or optical) dispersion branch. We also consider the junctures of dispersion branches and 'dense' clusters thereof, where the asymptotic analysis reveals several distinct regimes driven by the parity and symmetries of the germane eigenfunction basis. In the case of junctures, one of these asymptotic regimes is shown to describe the so-called Dirac points that are relevant to the phenomenon of topological insulation. On the other hand, the effective model for nearby solution branches is found to invariably entail a Dirac-like system of equations that describes the interacting dispersion surfaces as 'blunted cones'. For all cases considered, the effective description turns out to admit the same general framework, with differences largely being limited to (i) the eigenfunction basis, (ii) the reference cell of medium periodicity, and (iii) the wavenumber-frequency scaling law underpinning the asymptotic expansion. We illustrate the analytical developments by several examples, including Green's function near the edge of a band gap and clusters of nearby dispersion surfaces.

3.
Proc Math Phys Eng Sci ; 474(2213): 20170638, 2018 May.
Article in English | MEDLINE | ID: mdl-29887746

ABSTRACT

When considering an effective, i.e. homogenized description of waves in periodic media that transcends the usual quasi-static approximation, there are generally two schools of thought: (i) the two-scale approach that is prevalent in mathematics and (ii) the Willis' homogenization framework that has been gaining popularity in engineering and physical sciences. Notwithstanding a mounting body of literature on the two competing paradigms, a clear understanding of their relationship is still lacking. In this study, we deploy an effective impedance of the scalar wave equation as a lens for comparison and establish a low-frequency, long-wavelength dispersive expansion of the Willis' effective model, including terms up to the second order. Despite the intuitive expectation that such obtained effective impedance coincides with its two-scale counterpart, we find that the two descriptions differ by a modulation factor which is, up to the second order, expressible as a polynomial in frequency and wavenumber. We track down this inconsistency to the fact that the two-scale expansion is commonly restricted to the free-wave solutions and thus fails to account for the body source term which, as it turns out, must also be homogenized-by the reciprocal of the featured modulation factor. In the analysis, we also (i) reformulate for generality the Willis' effective description in terms of the eigenfunction approach, and (ii) obtain the corresponding modulation factor for dipole body sources, which may be relevant to some recent efforts to manipulate waves in metamaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...