Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(5): e26907, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38449663

ABSTRACT

To meet the requirements of diagnosis and treatment, photodynamic therapy (PDT) is a promising cancer treatment with less side-effect. A series of novel BODIPY complexes (BODIPY-CDs) served as PDT agents were first reported to enhance the biocompatibility and water solubility of BODIPY matrix through the click reaction of alkynyl-containing BODIPY and azide-modified cyclodextrin (CD). BODIPY-CDs possessed superior water solubility due to the introduction of CD and their fluorescence emission apparently redshifted (>90 nm) on account of triazole units as the linkers compared to alkynyl-containing BODIPY. Moreover, all the BODIPY-CDs were no cytotoxicity toward NIH 3T3 in different drug concentrations from 12.5 to 200 µg/mL, and had a certain inhibitory effect on tumor HeLa cells. Particularly, BODIPY-ß-CD exhibited high reactive oxygen species generation and excellent photodynamic therapy activity against HeLa cells compared to other complexes. The cell viability of BODIPY-ß-CD was dramatically reduced up to 20% in the concentration of 100 µg/mL upon 808 nm laser irradiation. This architecture might provide a new opportunity to develop valuable photodynamic therapy agents for tumor cells.

2.
Gut Microbes ; 16(1): 2316575, 2024.
Article in English | MEDLINE | ID: mdl-38381494

ABSTRACT

Intestinal microbiota dysbiosis and metabolic disruption are considered essential characteristics in inflammatory bowel disorders (IBD). Reasonable butyrate supplementation can help patients regulate intestinal flora structure and promote mucosal repair. Here, to restore microbiota homeostasis and butyrate levels in the patient's intestines, we modified the genome of Saccharomyces cerevisiae to produce butyrate. We precisely regulated the relevant metabolic pathways to enable the yeast to produce sufficient butyrate in the intestine with uneven oxygen distribution. A series of engineered strains with different butyrate synthesis abilities was constructed to meet the needs of different patients, and the strongest can reach 1.8 g/L title of butyrate. Next, this series of strains was used to co-cultivate with gut microbiota collected from patients with mild-to-moderate ulcerative colitis. After receiving treatment with engineered strains, the gut microbiota and the butyrate content have been regulated to varying degrees depending on the synthetic ability of the strain. The abundance of probiotics such as Bifidobacterium and Lactobacillus increased, while the abundance of harmful bacteria like Candidatus Bacilloplasma decreased. Meanwhile, the series of butyrate-producing yeast significantly improved trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice by restoring butyrate content. Among the series of engineered yeasts, the strain with the second-highest butyrate synthesis ability showed the most significant regulatory and the best therapeutic effect on the gut microbiota from IBD patients and the colitis mouse model. This study confirmed the existence of a therapeutic window for IBD treatment by supplementing butyrate, and it is necessary to restore butyrate levels according to the actual situation of patients to restore intestinal flora.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Animals , Mice , Saccharomyces cerevisiae/genetics , Butyrates , Inflammatory Bowel Diseases/drug therapy , Dysbiosis , Dietary Supplements
3.
Int J Biol Macromol ; 247: 125733, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37423452

ABSTRACT

Routinely screened antibody fragments usually require further in vitro maturation to achieve the desired biophysical properties. Blind in vitro strategies can produce improved ligands by introducing random mutations into the original sequences and selecting the resulting clones under more and more stringent conditions. Rational approaches exploit an alternative perspective that aims first at identifying the specific residues potentially involved in the control of biophysical mechanisms, such as affinity or stability, and then to evaluate what mutations could improve those characteristics. The understanding of the antigen-antibody interactions is instrumental to develop this process the reliability of which, consequently, strongly depends on the quality and completeness of the structural information. Recently, methods based on deep learning approaches critically improved the speed and accuracy of model building and are promising tools for accelerating the docking step. Here, we review the features of the available bioinformatic instruments and analyze the reports illustrating the result obtained with their application to optimize antibody fragments, and nanobodies in particular. Finally, the emerging trends and open questions are summarized.


Subject(s)
Antibodies , Immunoglobulin Fragments , Reproducibility of Results , Mutation , Antibodies/genetics , Antibody Affinity
4.
J Photochem Photobiol B ; 242: 112701, 2023 May.
Article in English | MEDLINE | ID: mdl-37003123

ABSTRACT

Phototherapy is a new method to treat tumor, including photodynamic therapy (PDT) and photothermal therapy (PTT). However, the GSH in tumor cells could deplete ROS produced by photosensitizers, resulting in inadequate PDT. Isothiocyanate not only is a new type of anti-tumor drug, but also may combine with GSH, increasing the content of intracellular ROS and improving PDT effect. Here we synthesized a kind of water-soluble nanoparticles (BN NPs) parceling BODIPY-I-35 up with mPEG-ITC and lecithin. mPEG-ITC can react with GSH in tumor cells to reduce the consumption of ROS. BN NPs can be used as vectors to deliver drugs to tumor sites. Under 808 nm laser irradiation, BN NPs solution increased 13 °C within 10 min, indicating that BN NPs had superb photothermal performance. In vitro experiments, low dose BN NPs showed satisfactory PDT and PTT effects, and the cell viability of MCF-7 cell was only 13%. In vivo, BN NPs with excellent biocompatibility showed favorable phototherapy effect and tumor was effectively inhibited. Fluorescence imaging could present the long retention effect of BN NPs in tumor locations. In conclusion, the BN NPs showed the effect of enhancing phototherapy and provided a remarkable application prospect in the phototherapy of tumor cells.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Reactive Oxygen Species , Phototherapy/methods , Neoplasms/drug therapy , Nanoparticles/therapeutic use , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Cell Line, Tumor
5.
Photodiagnosis Photodyn Ther ; 37: 102723, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35032702

ABSTRACT

Photodynamic therapy (PDT) has a successful track record in cancer. . Urea is a naturally occurring metabolite in the human body. Some studies have shown that it can inhibit the proliferation of tumor cells and cause oxidative stress. In order to explore the application of urea in enhancing the PDT effect, we synthesized a new photosensitizer (BODIPY-I-35) with good phototherapeutic effect and encapsulated it in liposomes. Compared with free BODIPY-I-35, water-soluble nanoliposomes (LipoBOD) produced a huge redshift (> 122 nm) of fluorescence emission in solution. When LipoBOD was irradiated with 808 nm laser (1 W/cm2) for 10 min, the temperature contrast increased by 20 °C, which was 4 times higher than free BODIPY-I-35. Confocal microscopy showed appreciable accumulation of LipoBOD in HeLa cells. In addition, when LipoBOD was incubated with urea in HeLa cells, we found that urea not only obviously enhanced the production of ROS, but also increased the apoptosis of HeLa cells. The synergistic effect of LipoBOD (20 µg/mL, at BODIPY-I-35-eq) with urea (250 mM) showed significantly higher phototoxicity than LipoBOD alone. Low dose can reduce the cell viability to 10%. Therefore, we have obtained an effective method of using urea to enhance the PDT effect.


Subject(s)
Nanoparticles , Photochemotherapy , Boron Compounds , HeLa Cells , Humans , Liposomes , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy , Urea/pharmacology
6.
J Mater Chem B ; 9(36): 7461-7471, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34551049

ABSTRACT

BODIPY dyes have recently been used for photothermal and photodynamic therapy of tumors. However, complex multi-material systems, multiple excitation wavelengths and the unclear relationship between BODIPY structures and their PTT/PDT efficiency are still major issues. In our study, nine novel BODIPY near-infrared dyes were designed and successfully synthesized and then, the relationships between BODIPY structures and their PTT/PDT efficiency were investigated in detail. The results showed that modifications at position 3,5 of the BODIPY core with conjugated structures have better effects on photothermal and photodynamic efficiency than the modifications at position 2,6 with halogen atoms. Density functional theory (DFT) calculations showed that this is mainly due to the extension of the conjugated chain and the photoinduced electron transfer (PET) effect. By encapsulating BDPX-M with amphiphilic DSPE-PEG2000-RGD and lecithin, the obtained NPs not only show good water solubility and biological stability, but also could act as superior agents for photothermal and photodynamic synergistic therapy of tumors. Finally, we obtained BODIPY NPs that exhibited excellent photothermal and photodynamic effects at the same time under single irradiation with an 808 nm laser (photothermal conversion efficiency: 42.76%, A/A0: ∼0.05). In conclusion, this work provides a direction to design and construct phototherapeutic nanoparticles based on BODIPY dyes for tumor treatment.


Subject(s)
Biocompatible Materials/chemistry , Boron Compounds/chemistry , Nanoparticles/chemistry , Animals , Benzofurans/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Cell Survival/drug effects , Density Functional Theory , Electron Transport , HeLa Cells , Humans , Infrared Rays , Mice , Neoplasms/therapy , Oligopeptides/chemistry , Photochemotherapy , Photothermal Therapy/methods , Polyethylene Glycols/chemistry , Singlet Oxygen/metabolism , Transplantation, Heterologous
7.
Adv Healthc Mater ; 10(8): e2001874, 2021 04.
Article in English | MEDLINE | ID: mdl-33448142

ABSTRACT

Targeted synergistic therapy has broad prospects in tumor treatments. Here, a multi-functional nanodrug GDYO-CDDP/DOX@DSPE-PEG-MTX (GCDM) based on three traditional anticancer drugs (doxorubicin (DOX), cisplatin (CDDP) and methotrexate (MTX)) modified graphdiyne oxide (GDYO) is described, for diagnosis and targeted cancer photo-chemo synergetic therapy. In this system, for the first time, these three traditional anti-cancer drugs have played new roles and can reduce multidrug resistance through synergistic anti-tumor effects. Cisplatin can be hybridized with GDYO to form a multifunctional and well-dispersed three-dimensional framework, which can not only be used as nano-drug carriers to achieve high drug loading rates (40.3%), but also exhibit excellent photothermal conversion efficiency (47%) and good photodynamic effects under NIR irradiation. Doxorubicin (DOX) is loaded onto GDYO-CDDP through π-π stacking, which is used as an anticancer drug and as a fluorescent probe for nanodrug detection. Methotrexate (MTX) can be applied in tumor targeting and play a role in synergistic chemotherapy with DOX and CDDP. The synthesized multi-functional nanodrug GCDM has good biocompatibility, active targeting, long-term retention, sustained drug release, excellent fluorescence imaging capabilities, and remarkable photo-chemo synergistic therapeutic effects.


Subject(s)
Graphite , Nanoparticles , Neoplasms , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Liberation , Neoplasms/drug therapy , Phototherapy
8.
Nanoscale ; 11(24): 11709-11718, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31180099

ABSTRACT

Multimodal therapies have been regarded as promising strategies for cancer treatment as compared to conventional drug delivery systems that have various drawbacks in either low loading content, uncontrolled release, non-targeting or biotoxicity. We have developed a multifunctional three-dimensional tumor-targeting drug delivery system, Fe3O4@UIO-66-NH2/graphdiyne (FUGY), based on the hybridization of a novel two-dimensional material, graphdiyne (GDY), with a metal organic framework (MOFs) structure, Fe3O4@UIO-66-NH2 (FU). The FU MOF structure has superior ability for magnetic targeting, and was constructed by an in situ growth method in which it was surface-installed with GDY via amide bonds, as a carrier of anticancer drugs. The anticancer drug doxorubicin (DOX) was loaded onto FUGY and served as both an anticancer drug to treat the tumor and a fluorescence probe to ascertain the location of FUGY. The results show that FUGY exhibits a high drug loading content of 43.8% and an effective drug release around the tumor cells at pH 5.0. In particular, fluorescence imaging demonstrates that FUGY can deliver more anticancer drugs to tumor tissue than conventional drug delivery systems. Furthermore, FUGY exhibits superior therapeutic efficiencies with negligible side effects as compared to the direct administration of free DOX, both in vitro and in vivo. The obtained FUGY drug delivery system possesses ideal biocompatibility, sustained drug release, effective chemotherapeutic efficacy, and specific targeting abilities. Such a multimodal therapeutic system can facilitate new possibilities for multifunctional drug delivery systems.


Subject(s)
Antibiotics, Antineoplastic , Doxorubicin , Drug Carriers , Magnetite Nanoparticles , Neoplasms, Experimental , Optical Imaging , Animals , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , HeLa Cells , Humans , Hydrogen-Ion Concentration , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology
9.
Theranostics ; 8(11): 3111-3125, 2018.
Article in English | MEDLINE | ID: mdl-29896306

ABSTRACT

Low water solubility and poor selectivity are two fundamental limitations that compromise applications of near-infrared (NIR) fluorescent probes. Methods: Here, a simple strategy that can resolve these problems simultaneously was developed by using a novel hybrid protein named RGD-HFBI that is produced by fusion of hydrophobin HFBI and arginine-glycine-aspartic acid (RGD) peptide. This unique hybrid protein inherits self-assembly and targeting functions from HFBI and RGD peptide respectively. Results: Boron-dipyrromethene (BODIPY) used as a model NIR dye can be efficiently dispersed in the RGD-HFBI solution by simple mixing and sonication for 30 min. The data shows that self-assembled RGD-HFBI forms a protein nanocage by using the BODIPY as the assembly template. Cell uptake assay proves that RGD-HFBI/BODIPY can efficiently stain αvß3 integrin-positive cancer cells. Finally, in vivo affinity tests fully demonstrate that the soluble RGD-HFBI/BODIPY complex selectively targets and labels tumor sites of tumor-bearing mice due to the high selectivity of the RGD peptide. Conclusion: Our one-step strategy using dual-functional RGD-HFBI opens a novel route to generate soluble and targeted NIR fluorescent dyes in a very simple and efficient way and may be developed as a general strategy to broaden their applications.


Subject(s)
Antineoplastic Agents/metabolism , Fluorescent Dyes/metabolism , Imidazoles/metabolism , Neoplasms, Experimental/diagnostic imaging , Neoplasms/diagnostic imaging , Oligopeptides/metabolism , Animals , Antineoplastic Agents/chemistry , Boron/chemistry , Cell Line, Tumor , Female , Flow Cytometry , Fluorescent Dyes/chemistry , Imidazoles/chemistry , Infrared Rays , Integrin alphaVbeta3/chemistry , Integrin alphaVbeta3/metabolism , Mice , Mice, Nude , Microscopy, Confocal , Nanocapsules , Oligopeptides/chemistry , Porphobilinogen/analogs & derivatives , Porphobilinogen/chemistry , Recombinant Fusion Proteins , Solubility
10.
ACS Appl Mater Interfaces ; 10(5): 4715-4725, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29336545

ABSTRACT

The utilization of silicon/carbon composites as anode materials to replace the commercial graphite is hampered by their tendency to huge volumetric expansion, costly raw materials, and complex synthesis processes in lithium-ion batteries. Herein, self-assembly method is successfully applied to prepare hierarchical silicon nanoparticles@oxidized mesocarbon microbeads/carbon (Si@O-MCMB/C) composites for the first time, in which O-MCMB core and low-cost sucrose-derived carbon shell not only effectively enhance the electrical conductivity of the anode, but also mediate the dramatic volume change of silicon during cycles. At the same time, the carbon can act as "adhesive", which is crucial in enhancing the adhesive force between Si and O-MCMB in the composites. The as-obtained Si@O-MCMB/C delivers an initial reversible capacity of 560 mAh g-1 at 0.1 A g-1, an outstanding cyclic retention of 92.8% after 200 cycles, and respectable rate capability. Furthermore, the synthetic route presented here is efficient, less expensive, simple, and easy to scale up for high-performance composites.

11.
RSC Adv ; 8(38): 21472-21479, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-35539954

ABSTRACT

A novel fluorescent probe was constructed by the self-assembly of monosubstituted BODIPY and a novel targeted hydrophobin named hereafter as HFBI-RGD. Optical measurements and theoretical calculations confirmed that the spectral properties of the probe were greatly influenced by the BODIPY structure, the appropriate volume of BODIPY and the cavity of HFBI-RGD. The experiments in vivo and ex vivo demonstrated that the probe had excellent ability for tumor labelling.

12.
RSC Adv ; 8(36): 20087-20094, 2018 May 30.
Article in English | MEDLINE | ID: mdl-35541689

ABSTRACT

Fluorescent probes have been demonstrated to be promising candidates as biomarkers and biological carriers. Our study focuses on the development of a novel amphiphilic fluorescent probe with good photostability, high water solubility, excellent specificity and promising loading capability for tumor diagnosis and treatment. At first, BODIPY dye and O-carboxymethyl chitosan were prepared via a chemical reaction. Then, the prepared BODIPY dye and cRGD were bonded to O-carboxymethyl chitosan successively via an acylation reaction. Finally, we obtained the desired amphiphilic fluorescent probe: BODIPY-O-CMC-cRGD, which was based on the fluorescence resonance energy transfer (FRET) principle for selective visualization of tumors in vitro. Through a series of experiments, we found that this fluorescent probe possessed better fluorescence characteristics and tumor targeting properties. Simultaneously, by self-assembly, the amphiphilic probe encapsulated the other flexible structure of BODIPY2 and the rigid structure of porphyrin, which formed distinct nanoparticles with different particle sizes. Hence, we could observe different phagocytosis processes of the two nanoparticles in the tumor cells via the fluorescence of dyes by confocal laser scanning microscopy. Therefore, the results suggest that the fluorescent probe has advantages in tumor detection, and the constructed tumor-specific nanoparticles show high clinical potential to be utilized not only in visual and precise diagnosis but also in excellent drug delivery for tumor treatment. Henceforth, we will prepare new targeted and visualized pharmaceuticals by replacing BODIPY2 and porphyrin with antineoplastic drugs for future tumor treatment.

13.
Sci Rep ; 6: 23061, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26976627

ABSTRACT

Low water solubility and poor membrane permeability are major disadvantages that compromise applications of most fluorescent dyes. To resolve these problems, herein, using Boron-dipyrromethene (BODIPY) as a model fluorescent dye, for the first time, we provide a new strategy for the rapid and efficient production of a water-soluble and membrane-permeable dye by mixing with an amphiphilic protein named hydrophobin. Data shows BODIPY could be effectively solubilized and dispersed in 200 µg/mL hydrophobin by simple mixing and sonication. Subsequent experiments indicated that hydrophobin self-assembled into a protein film on the surface of BODIPY forming stable hydrophobin-BODIPY complexes with a size range of 10-30 nm. Furthermore, we demonstrated hydrophobin-functionalized BODIPY are toxicity free to cells. The hydrophobin-BODIPY complex could pass through both the cell plasma membrane and nuclear membrane efficiently. Our work opens a novel route to modify and functionalize fluorescent dyes and may be developed as a general strategy for broadening their applications.


Subject(s)
Cell Membrane Permeability , Fluorescent Dyes/chemistry , Fungal Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Animals , Biological Transport , Boron Compounds/chemistry , Boron Compounds/metabolism , Boron Compounds/pharmacology , Cell Membrane/metabolism , Cell Survival/drug effects , Fluorescent Dyes/metabolism , Fluorescent Dyes/pharmacology , Fungal Proteins/metabolism , Fungal Proteins/pharmacology , HeLa Cells , Humans , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , NIH 3T3 Cells , Nuclear Envelope/metabolism , Photoelectron Spectroscopy , Solubility , Spectroscopy, Fourier Transform Infrared
14.
Amino Acids ; 47(7): 1409-19, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25854877

ABSTRACT

The insulin-like growth factor 1 receptor (IGF-1R) serves as an attractive target for cancer molecular imaging and therapy. Previous single photon emission computerized tomography (SPECT) studies showed that the IGF-1R-targeting Affibody molecules (99m)Tc-ZIGF1R:4551-GGGC, [(99m)Tc(CO)3](+)-(HE)3-ZIGF1R:4551 and (111)In-DOTA-ZIGF1R:4551 can discriminate between high and low IGF-1R-expression tumors and have the potential for patient selection for IGF-1R-targeted therapy. Compared with SPECT, positron emission tomography (PET) may improve imaging of IGF-1R-expression, because of its high sensitivity, high spatial resolution, strong quantification ability. The aim of the present study was to develop the (64)Cu-labeled NOTA-conjugated Affibody molecule ZIGF-1R:4:40 as a PET probe for imaging of IGF-1R-positive tumor. An Affibody analogue (Ac-Cys-ZIGF-1R:4:40) binding to IGF-1R was site-specifically conjugated with NOTA and labeled with (64)Cu. Binding affinity and specificity of (64)Cu-NOTA-ZIGF-1R:4:40 to IGF-1R were evaluated using human glioblastoma U87MG cells. Small-animal PET, biodistribution, and metabolic stability studies were conducted on mice bearing U87MG xenografts after the injection of (64)Cu-NOTA-ZIGF-1R:4:40 with or without co-injection of unlabeled Affibody proteins. The radiosynthesis of (64)Cu-NOTA-ZIGF-1R:4:40 was completed successfully within 60 min with a decay-corrected yield of 75 %. (64)Cu-NOTA-ZIGF-1R:4:40 bound to IGF-1R with low nanomolar affinity (K D = 28.55 ± 3.95 nM) in U87MG cells. (64)Cu-NOTA-ZIGF-1R:4:40 also displayed excellent in vitro and in vivo stability. In vivo biodistribution and PET studies demonstrated targeting of U87MG gliomas xenografts was IGF-1R specific. The tumor uptake was 5.08 ± 1.07 %ID/g, and the tumor to muscle ratio was 11.89 ± 2.16 at 24 h after injection. Small animal PET imaging studies revealed that (64)Cu-NOTA-ZIGF-1R:4:40 could clearly identify U87MG tumors with good contrast at 1-24 h after injection. This study demonstrates that (64)Cu-NOTA-ZIGF-1R:4:40 is a promising PET probe for imaging IGF-1R positive tumor.


Subject(s)
Biomarkers, Tumor/metabolism , Glioblastoma/diagnostic imaging , Receptor, IGF Type 1/metabolism , Animals , Cell Line, Tumor , Copper Radioisotopes/pharmacokinetics , Glioblastoma/metabolism , Humans , Mice, Nude , Neoplasm Transplantation , Peptide Fragments/pharmacokinetics , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Recombinant Fusion Proteins , Staphylococcal Protein A/chemistry , Tissue Distribution
15.
Sci Rep ; 3: 1490, 2013.
Article in English | MEDLINE | ID: mdl-23508226

ABSTRACT

Development of reporter genes for multimodality molecular imaging is highly important. In contrast to the conventional strategies which have focused on fusing several reporter genes together to serve as multimodal reporters, human tyrosinase (TYR)--the key enzyme in melanin production--was evaluated in this study as a stand-alone reporter gene for in vitro and in vivo photoacoustic imaging (PAI), magnetic resonance imaging (MRI) and positron emission tomography (PET). Human breast cancer cells MCF-7 transfected with a plasmid that encodes TYR (named as MCF-7-TYR) and non-transfected MCF-7 cells were used as positive and negative controls, respectively. Melanin targeted N-(2-(diethylamino)ethyl)-18F-5-fluoropicolinamide was used as a PET reporter probe. In vivo PAI/MRI/PET imaging studies showed that MCF-7-TYR tumors achieved significant higher signals and tumor-to-background contrasts than those of MCF-7 tumor. Our study demonstrates that TYR gene can be utilized as a multifunctional reporter gene for PAI/MRI/PET both in vitro and in vivo.


Subject(s)
Genes, Reporter , Magnetic Resonance Imaging , Molecular Imaging/methods , Monophenol Monooxygenase/genetics , Positron-Emission Tomography , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Heterografts , Humans , Magnetic Resonance Imaging/methods , Melanins/biosynthesis , Mice , Monophenol Monooxygenase/metabolism , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals
16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 21(4): 597-601, 2004 Aug.
Article in Chinese | MEDLINE | ID: mdl-15357440

ABSTRACT

In this study cationic and heparinized polyurethanes (PUs) were synthesized by a two-step solution polymerized method. Cationic and heparinized PUs were investigated by infrared spectroscopy, electron spectroscopy for chemical analysis (ESCA) and turbidity method. At the same time, the PUs proved of good biocompatibility through the laboratory tests, including blood coagulation time (CT), activated partial thromb plastin time (APTT) and fibroblast culture. These materials have good biocompatible function.


Subject(s)
Coated Materials, Biocompatible/chemistry , Heparin/pharmacology , Polyurethanes/chemistry , Blood Coagulation Tests , Humans , Materials Testing , Partial Thromboplastin Time , Polyurethanes/chemical synthesis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...